
1/23/2025

1

PDL Name

Robust Programs

Date

Key Information

1) Remember this booster is here to help you.
Please consider your behaviour in the chat.

2) If you are in a room with a teacher/group,
please login to the meeting. This is so we can
mark your attendance. This information goes
into a prize draw.

3) Make sure the name on the meeting is the
SAME as the name on your Isaac account.
We can't mark you present if they don't
match.

Starter

• What is the purpose of input validation, and why
is it important?

user_input = input("Enter your age: ")

if user_input.isdigit() and int(user_input) > 0:

 print("Valid age!")

else:

 print("Invalid input. Please enter a positive number.")

• Answers in the chat

2 minutes

1/23/2025

2

Answers
Purpose of Input Validation

• Ensures data entered is valid and within
expected limits.

• Prevents errors that may cause the program to
crash.

Why It’s Important

• Improves program reliability and user
experience.

• Enhances security by reducing invalid or
malicious inputs.

What was the point of the
starter?
• This question highlights the importance of

input validation in programming.

• It prepares you to write code that handles user
inputs effectively and avoids errors.

Range Checks –
Confirms values fall
within specific limits

(e.g. age > 0).

Intended learning outcomes
• Be able to explain the importance of defensive

design in creating robust programs.

• Be able to implement input validation
techniques to ensure data integrity.

• Be able to write simple authentication routines
(e.g. username and password checks).

• Be able to apply techniques for writing
maintainable code, including naming
conventions, subprograms, and commenting.

1/23/2025

3

Check in
On a scale of 1–10 (1 = low, 10 = high), rate your
confidence in:

1. Understanding what defensive design is and
why it’s important.

2. Writing basic input validation routines to check
user input.

3. Creating maintainable code using clear
comments and naming conventions.

Post your answers in the chat, e.g. 1(5), 2(7), 3(4)

1 minute

What is Defensive Design?

• Defensive Design is about writing code to:

• Prevent misuse of the program.

• Ensure the program works as intended, even

with unexpected inputs.

• It helps make software robust and reliable.

Why is Defensive Design
Important?

• Prevents program failures caused by misuse.

• Reduces bugs and unexpected behaviour.

• Protects systems from invalid or malicious

inputs.

• Ensures user confidence by improving

reliability.

1/23/2025

4

Anticipating Misuse

• Plan for how users might misuse the program.
• Example: A user enters text instead of a

number.

• Solutions:
• Use input validation to check data types,

lengths, or ranges.
• Provide error messages to guide users.

Example

user_input = input("Enter your age: ")

if user_input.isdigit():

 print("Valid input")

else:

 print("Invalid input")

Trinket Link

Authentication

• Authentication ensures only authorised users
can access the system.

• Common methods:
• Username and password checks.
• Multi-factor authentication
• e.g. One Time Passwords (OTPs)

1/23/2025

5

Example

username = input("Enter username: ")

password = input("Enter password: ")

if username == "admin" and password == "1234":

 print("Access granted")

else:

 print("Access denied")

Trinket Link

Authentication

• Make a prediction about what you think will happen,
then run the code and note whether your prediction
was correct.

• Modify the code so that Emma is now a valid
username and adjust the output so that all val id users
are greeted with their name e.g. “Emma, entry granted”

valid_usernames = ["Rachel", "Louise", "Laura"]

username = input("Enter your username")

while username not in valid_usernames:

 print("Entry denied")

 username = input("Enter your username")

print("Entry granted")

Trinket Link Activ ity 1

Summary

• Defensive Design involves:
• Anticipating misuse and handling errors

gracefully.

• Implementing authentication to protect
systems.

• Benefits:
• Prevents errors.
• Enhances security.
• Improves user experience.

1/23/2025

6

Check in
Review the following code snippet:
password = input("Enter password: ")

if password == "password":

 print("Welcome!")

Which of the following statements are true?

A. The password is strong and secure.

B. The code allows any string input to be used as a password.

C. The code lacks error handling for empty inputs.

D. The password can be easily guessed, making the system
insecure.

Validation

• Validation checks system inputs to make sure
that the data entered is acceptable

• Validation can’t check if the data is correct. If
you tell it your name is Bob it will assume
you’re Bob

• Make sure your input statements have clear
prompts, that describe what is required and in
what format.

Validation Checks

• There are different types of validation, these
include:

• Range check

• Lookup check

• Type check
• Presence check

• Length check

• Format check

1/23/2025

7

Range Check

• A range check makes sure a num ber is with in a certain
range:

Trinket Link

number = int(input("Please enter a number between 1 and 10"))

while number < 1 or number > 10:

 print("Invalid choice")

 number = int(input("Please enter a number between 1 and 10"))

print("Valid choice")

Lookup Check

• A lookup check only allows a limited list of i tems to be
entered:

Trinket Link

choice = "Yes"

while choice in ["yes", "Yes", 'YEs', "YES", 'Y', 'y']:
print('Hello World')
choice = input("Would you like to see the message again?")

print("OK bye")

Type Check

• A type check ensures that the correct type of data is
entered:

number = input("Enter a number")

while not number.isdigit():

 print(number, "is not a number")

 number = input("Enter a number")

print(int(number), "is a number")

Trinket Link

1/23/2025

8

Presence Check:

• A presence check ensures that a required field is not
left blank.

• This is crucial to ensure the program ha s all the
necessary data to function correctly.

name = input("Enter your name: ")

Check if the input is empty or only contains spaces

while not name.strip():

 print("This field cannot be left blank.")

 name = input("Enter your name: ")

print("Hello", name)

Trinket Link

Length Check

• A length check ensures that a string is the correct
length

• The len() funct ion determines the length of the string

Trinket Link

valid = False

while not valid:

 password = input("Please enter your password: ")

 if len(password) < 8:

 print("Password must have at least 8 characters")

 else:

 print("Password is the correct length")

 valid = True

Format Check

• A format check ensures that input data matches a
specif ic format or pattern .

• For example, va lidat ing a password or email address

Trinket Link

valid = False

while not valid:

 password = input("Please enter at least one number: ")

 for i in ["0","1","2","3","4","5","6","7","8","9"]:

 if i in password:

 valid = True

 if not valid:

 print('Invalid password')

print('Valid password')

1/23/2025

9

Check in
Charlie is developing an adding game with the
following rules:

• The player is asked 3 addition questions.

• Each question asks the player to add
together two random whole numbers
between 1 and 10 inclusive.

• If the player gets the correct answer, 1 is
added to their score.

• At the end of the game, their score is
displayed.

Check in
Which type of validat ion would be most suitable for
checking the player’s answer in Charlie’s game?

A. A range check ensures the player’s answer is within 1

and 10.
B. A length check ensures the player enters exactly 3

numbers.
C. A presence check ensures the player submits an

answer.

D. A type check ensures the player enters a valid integer
as their answer.

Post your answers in the chat, e.g. A, B, C, or D.

Maintainable Code

• Use subroutines to simplify code.

• Apply consistent naming conventions.

• Proper indentation for readability.

• Add meaningful comments for clarity

1/23/2025

10

Subprograms

• Subprograms (functions & procedures) help
break the code into smaller, reusable pieces.

• They make the program easier to debug and
maintain.

Trinket Link

def validate_age_input():

 user_input = input("Enter your age: ")

 if user_input.isdigit():

 print("Valid input")

 else:

 print("Invalid input")

Calling the subroutine

validate_age_input()

Naming Conventions

• Use clear, descriptive names for variables and
subroutines.

• Follow consistent naming styles (e.g.
snake_case for variables).

def validate_age_input():

 user_input = input("Enter your age: ")

 if user_input.isdigit():

 print("Valid input")

 else:

 print("Invalid input")

Proper Indentation

• Indentation makes code easier to read and
understand.

• Python requires consistent indentation for
correct execution.

def validate_age_input():

 user_input = input("Enter your age: ")

 if user_input.isdigit():

 print("Valid input")

 else:

 print("Invalid input")

Calling the subroutine

validate_age_input()

1/23/2025

11

Meaningful Comments
• Comments explain what the code does,

improving readability.

• Use comments to describe logic, complex
sections, or functions.

def validate_age_input():

 # Prompt the user to enter their age

 user_input = input("Enter your age: ")

 # Check if the input consists only of digits

 if user_input.isdigit():

 # Input is valid if it contains only digits

 print("Valid input")

 else:

 # Input is invalid if it contains non-digit characters

 print("Invalid input")

Spot the Errors

• Pre dict what you think wil l happen when the code is
run . Does it handle al l inputs correctly?

• Run the code and identify the errors.

• Modify the code so that:

• The input is validated as a positive integer.

• The program doesn’t crash if invalid input is
entered.

def validate_age():

 age = input("Enter your age: ")

 if age > 0 and age < 120:

 print("Valid age")

 else

 print("Invalid input")

Trinket Link Activ ity 2

Intended learning outcomes
• Be able to explain the importance of defensive

design in creating robust programs.

• Be able to implement input validation
techniques to ensure data integrity.

• Be able to write simple authentication routines
(e.g. username and password checks).

• Be able to apply techniques for writing
maintainable code, including naming
conventions, subprograms, and commenting.

1/23/2025

12

Game Board GameboardIsaac link

ISAAC boosters

Keep an eye out
for more student
booster events

Thank you

