W Isaac

¥4 Science

Robust Programs

PDL Name

Key Information

1) Remember this booster is here to_ help you.
Please consider your behaviour in the chat.

2) If you are ina room with a teacher/group,
please loginto the meeting. This is so we can
mark your attendance. This information goes
into a prizedraw.

3) Make sure the name on the meeting is the
SAME as the name on your Isaac account.
We can't mark you present if they don't
match.

Cc

r a 2 i ——

Starter

» What is the purpose of input validation, and why
isitimportant?

user_input = input("Enter your age: ")

if user_ input.isdigit() and int (user_input) > 0:

print ("valid age!"™)
print("Invalid input. Please enter a positive number .")
+ Answers in the chat @
r v ! r

1/23/2025

Answers

Purpose of Input Validation

» Ensures data entered is valid and within
expected limits.

* Prevents errors that may cause the program to
crash.

Why It's Important

* Improves program reliability and user
experience.

* Enhances security by reducing invalid or
malicious inputs.

r v I _——

1/23/2025

What was the point of the
starter?

« This question highlights the importance of
input validation in programming.

* It prepares you to write code that handles user
inputs effectively and avoids errors.

Intended learning outcomes

» Beable to explain the importance of defensive
design in creating robust programs.

+ Beable to implement input validation
techniques to ensure dataintegrity.

* Be able to write simple authentication routines
(e.g. username and password checks).

* Be able to apply techniques for writing
maintainable code, including naming
conventions, subprograms, and commenting.

M

v ! F

[1 minute]
Check in

Ona scale of 1-10 (1 = low, 10 = high), rate your

confidence in:

1. Understanding what defensive design is and
why it's important.

2. Writing basic input validation routines to check
user input.

3. Creating maintainable code using clear
comments and naming conventions.

Post your answers in the chat, e.g. 1(5), 2(7), 3(4E

r s St ———

1/23/2025

What is Defensive Design?

- Defensive Design is about writing code to:
« Prevent misuse of the program.
« Ensure the program works as intended, even
with unexpected inputs.

- It helps make software robust and reliable.

4
d

Why is Defensive Design
Important?

- Prevents program failures caused by misuse.

« Reduces bugs and unexpected behaviour.

« Protects systems from invalid or malicious
inputs.

- Ensures user confidence by improving

reliability.

r v L _———

Anticipating Misuse

« Plan for how users might misuse the program.
- Example: A user enters text instead of a
number.
- Solutions:
- Use input validation to check datatypes,
lengths, or ranges.
« Provide error messages to guide users.

4
L

1/23/2025

Example @ TAnketLink

user input = input ("Enter your age: ")
if user input.isdigit():

print ("Valid input")
else:

print ("Invalid input")

4
d

Authentication

« Authentication ensures only authorised users
can access the system.

« Common methods:
- Usemame and password checks.
« Multi-factor authentication
- e.g. One Time Passwords (OTPs)

4
]

Example @ Trinket Link)

username = input ("Enter username: ")
password = input ("Enter password: ")
if username == "admin" and password == "1234":

print("Access granted")
else:
print("Access denied")

4
L

1/23/2025

Authentication & ——==w/&F=m

* Make a prediction about what you think will happen,
then run the code and note whether your prediction
was correct.

valid usernames = "Rachel", "Louise", "Laura"]
username = input("Enter your username")
while username n n valid usernames:

print ("Entry den
username = input (" your username")
print ("Entry granted")
* Modify the code sothat Emmais now a valid
username and adjust the output so that all valid users

are greeted with their name e.g. “Emma, entry granted”

r a 2 i ——

Summary

- Defensive Design involves:
- Anticipating misuse and handling errors
gracefully.
- Implementing authentication to protect
systems.
- Benefits:
+ Prevents errors.
- Enhances security.
« Improves user experience.

r v L _———

Check in

Review the following code snippet:
password = input("Enter password: ")
if password == "password":
print ("Welcome!™)
Which of the following statements are true?
A. The password is strong and secure.
B. The code allows any string inputto be used as a password.

C. The code lacks ermror handling for empty inputs.

D. The password can be easily guessed, making the system
insecure.

r v I _——

1/23/2025

Validation

« Validation checks system inputs to make sure
that the data entered is acceptable

« Validation can’t check if the datais correct. If
you tell it your name is Bob it will assume
you're Bob

» Make sure your input statements have clear
prompts, that describe what is required and in
what format.

4
d

Validation Checks

* There are different types of validation, these
include:

* Range check

* Lookup check

* Type check

* Presence check
* Length check

» Format check

r v L _———

Range Check GY Tmlemny)

« Arange check makes sure anumberis within a certain

range:
number = int (input ("Please enter a number between 1 and 10"))
while number < 1 or number > 10:

print("Invalid che

number = i e enter a number between 1 and 10"))

print("valid c

4
L

1/23/2025

Lookup Check

* Alookup check only allows a limited list of items to be
entered:

choice = "Yes"

le choice in ["
print('Hello ¥
choice =

, "YES", 'Yy', 'y'l:

1d you like to see the mes

print ("OK bye")

4
d

Type Check & Toeun)

« Atype check ensures that the correct type of datais
entered:

number = input("Enter a number")

while not number.isdigit():
print (number, "is not

a number")
number = input("Enter a

number")

print (int (number) , "is a number")

4
]

Presence Check: &y Tmeini)

« A presence check ensures that a required field is not
left blank.

« This is crucial to ensure the program has all the
necessary data to function correctly.

ut ("Enter your name: ")

ck if the input is empty or only

contains spaces
not name.strip():

t be left blank."
r name: ")

r v I _——

1/23/2025

Length Check & Tweuny

* Alength check ensures that a string is the correct
length

« The len() function determines the length of the string

valid = False
while not valid:

pas sword nput ("Please enter your pas ")
if len (password) < 8:
int("Password must have at least 8 characters")
is the correct length")
¥ & 1! A

Format Check & Tmeuny

« A format check ensures thatinput data matches a
specific format or pattern.

« Forexample, validating a password or email address

valid = False
while not valid:
password = input("Please enter at le
for i in ["O","1","2","3","4", 5", vE"
if i in password:
valid = True
if not wvalid:

print('Invalid pas

print('valid p

r v L _———

Check in

Charlie is developing an adding game with the
followingrules:

* The playeris asked 3 addition questions.

« Each question asks the player to add
together two random whole numbers
between 1 and 10 inclusive.

 |If the player gets the correct answer, 1 is
added to their score.

» Atthe endof the game, their scoreis

1/23/2025

displayed. C
¥ n 4 1t r
Check in

Which type of validation would be most suitable for
checking the player’s answer in Charlie’s game?

A. Arange check ensures the player's answer is within 1

and 10.

B. Alength check ensures the player enters exactly 3
numbers.

C. Apresence check ensures the player submits an
answer.

D. Atype check ensures the player enters a valid integer

as theiranswer.

Post your answers in the chat, e.g. A, B, C, or D.

r a 2 i ——

Cc

Maintainable Code

* Use subroutines to simplify code.
* Apply consistent naming conventions.
* Proper indentation for readability.
» Add meaningful comments for clarity

4
]

Subprograms & Teun

« Subprograms (functions & procedures) help
break the code into smaller, reusable pieces.

* They make the program easier to debug and
maintain.

def validate_age_input():
user_input = input("En
if user_input.isdigit():
print("Valid input™)

r your age: ")

else:
print("Invalid input")

Calling the subroutine c

1/23/2025

validate_age_input()
r = 2 1 A

Naming Conventions

* Use clear, descriptive names for variables and
subroutines.

* Follow consistent naming styles (e.g.
snake_case for variables).

def |validate_age_input()j:
(sex_input)- input("Bnter your age: ™

if user_input.isdigit():
print("valid input")

else:

print("Invalid input") c

Proper Indentation

« Indentation makes code easier to read and
understand.

« Python requires consistent indentation for
correct execution.

def validate age_input():
user_input = input("Enter your age:
if user input.isdigit():
rint("valid input")

)

rint("Invalid input")

Calling the subroutine c

validate_age_input()
r v ! A

10

Meaningful Comments

» Comments explain what the code does,
improving readability.

» Use comments to describe logic, complex
sections, or functions.

def validate_age_input():
Prompt the user to
user_input = input("Enter your age: ")

r their age

Check if the input co sts only of digits
if user_input.isdigit()
4 Input is valid if it contains only digits
print("Valid input")
else:
Input is invalid if it contains non-digit characters
print("Invalid input") c
r v 1 _———

1/23/2025

Spot the Errors & w5l

» Predict what you think will happen when the code is
run.Does it handle allinputs correctly?

def validate_age():
age = input("Enter your age: ")
if age > 0 and age < 120:
print("valid age")
else
print("Invalid input")

* Run the code and identify the errors.

* Modify the code so that:
» Theinput is validated as a positive integer.

» The program doesn't crash if invalid inputis
entered. ':
r v ! A

Intended learning outcomes

» Beable to explain the importance of defensive
design in creating robust programs.

» Beable to implement input validation
techniques to ensure dataintegrity.

* Be able to write simple authentication routines
(e.g. username and password checks).

* Be able to apply techniques for writing

maintainable code, including naming
conventions, subprograms, and commenting.

4
]

11

Game Board &) Foy
Robust Programs
o Usarinput
———
r 2 ! A

ISAAC boosters

Camm

Keep an eye out
for more student
booster events

1/23/2025

Thank you

“ ¥ Science

STEM

LEARNING

12

