9/24/2024

W Isaac
b | Computer
<% Science

Recursive
Programming

PDL Name

Intended learning outcomes

By the end of this session, you will:

* Beable to explain the principles of recursion,
including the concepts of base case and
general case.

* Be able to implement recursive functions to
solve various computational problems.

* Be able to analyse and compare recursive and
iterative approaches to problem-solving.

* Be able to identify and address potential issues
such as stack overflow in recursive functions.

C
r a 2 i ——

To understand recursion,
one must first understand ...
recursion

Stephen Hawking

Functions that call
themselves

* A recursive function contains a function call to
itself within itself

* A recursive function has two parts
i) base case i) general case

» The base case retums an answer that is known
e.g. return 1

* The general case contains the recursive call

* Each successive call should take you closer to
a situation that is known i.e. the base case

9/24/2024

r s 1 —
Recursive Structure
if (condition for which answer is known):
statement # base case
else:
recursive function call # general case

4
d

Which line expresses the
base case?

def sum_to_n(n):
if n ==
return 1
else:
return n + sum_to_n(n-1)

4
]

Visualisation

* Python Tutor is a

Vo
&= [=m

resource designed
to visualise what
happens when code
is executed.

* It can be used to

understand and
debug complex
code examples

9/24/2024

Unwinding

 Code before the
recursive call is

P n n +sun_to_n(n-1) | Returnvalue
(e);(ggrq,ted in “forward s Toemo T
4 4+6 10
3 3+3 6
« Calculations after the | |2_|2+1 3
recursive call are 1 1
executed in ‘reverse
order”
¥ s ik A
Stack Overflow % Tokernk]) (E] avwz)
» What happens if we et "f:“f..;"
forget the
base case? l é%
« If we recursively call S
too many functions SR
without returning, we GO -} =
cause a stack lé'y‘ﬂj.‘
overflow error
r a2 ! A

9/24/2024

Factorial

else:

def recursive factorial (n):
if n == 0: # base case

return 1
return n * recursive factorial(n - 1)

print(rec
Can you trace this algorithm? Remember the
r

gﬂ;; Lrinket Link | @ Activity 3]

general case

ursive_ factorial (4))

unwinding we learned on slide 8
0
1)

v

Lrinket link =] hctvitys

v

Base Case

* The function call Factorial(4) should retumn the
value 24, because that is 4 *3 *2 *1.
* For a situation in which the answer is known,

the value of 0lis 1.

* So, the base caseis

if n = 0:
A

return 1
-
1)

[Activity3]

o
4y Imennd] |2

General Case
« The value of Factorial(n) can be written as
n *the product of the numbers from (n-1) to 1
n*(n-T1)*...*1

or
n * Factorial(n - 1)

« Notice, that the recursive call Factorial(n- 1)
gets us "closer" to the base case of Factorial(0)

Unwinding & maw) B

Factorial (0) doesn't

* i -
make a recursive call, n *Factorial(n - 1)

but returns a 1, which =4 * factorial 3
starts the 'unwind =4 * (3* factorial 2)
process =4 * (3* (2 *factorial 1))

« Until Factorial (0) is ’
called, a stack of =4*(3* (2*(1 *factorial 0)))
uncompleted =4% (3% (2*(1*1))

calculations are stored =4% (3% (2%1))

Pay particular attention

to the returned value and =4*(3*2)
how that is used in the =4%6
previous call =24 C
¥ n 4 1t r

Tail Recursion & mew) Sy

« Tail recursion is when the call to itself is the last
action of the function.

def factorial(n): def factorial(n, a = 1):
if n==0: if n==0:

return 1 return a
else: else:

return n*factorial(n-1) return factorial(n-1, n*a)
print(factorial(4)) print(factorial(4))

r v ! ———

Recursive vs -

s
&

&y Tuoketlind @ Aotvity 5)

Iteration

+ Any task accomplished with iteration can also
be achieved with recursion.

* The resulting code will probably be more
elegant, compact and simpler to implement.

* The iterative approach could be described as
more 'naive’.

* Recursive algorithms are often slower, use
more memory and less efficient.

9/24/2024

4
]

Which is best? & zmmam) F=mn)

def naive factorial(n): def recursive factorial(n):
result = 1 if n 0:
while n > 0: return 1
result *=n else:
n-=1 return n * factorial(n - 1)

return result

4
L

9/24/2024

Recursive vs lteration

Benefits Drawbacks

More natural to read Can run out of memory (i.e.
stack overflow)

Quicker to write More difficult to trace and
follow

Suited to certain problems, eg. Requires more memory than
Divide and conquer merge sort anequivalent iterative program

& quick sort
Can reducethe sizeof a Usually slower than iterative
problem with eachcalle.g. methods

binary search

4
d

Conclusions

* Recursion provides an elegant method for
solving problems that can be divided into
smaller subproblems.

» While often more readable, recursive solutions
are not always the most efficient in terms of
memory and speed.

* Excessive recursion depth can exceed the call
stack limit and crash the program.

4
]

Intended learning outcomes

By the end of this session, you will:

« Be able to explain the principles of recursion,
including the concepts of base case and
general case.

* Be able to implement recursive functions to
solve various computational problems.

* Be able to analyse and compare recursive and
iterative approaches to problem-solving.

* Be able to identify and address potential issues
such as stack overflow in recursive functions.

r v I _——

9/24/2024

Game Board & =) B

Recursive Programming Booster Session

@ © © 6 © 0 ©

4
d

Extra Credit & e B

)

1. Write a recursive function that returns the
sum of the digits of an integer.

2. Write a recursive function (use no while loops
or for loops) that prints all the elements of a
list of integers, one per line. The parameters
to the function should be a list of integers
and the size of the list.

3. Modify the previous function to print out the
elements in reverse order.

r v L _———

9/24/2024

ISAAC boosters

Lo = ()
i
Keep an eye out
Welcome for more student
For your students booster events
L e

Foryou

Thank you

LEARNING

¥ Isaac N,
| >/\<STEM

¥4 Science

