
9/24/2024

1

PDL Name

Recursive
Programming

Date

Intended learning outcomes
By the end of this session, you will:

• Be able to explain the principles of recursion,
including the concepts of base case and
general case.

• Be able to implement recursive functions to
solve various computational problems.

• Be able to analyse and compare recursive and
iterative approaches to problem-solving.

• Be able to identify and address potential issues
such as stack overflow in recursive functions.

Stephen Hawking

To understand recursion,
one must first understand …

recursion!

9/24/2024

2

Functions that call
themselves
• A recursive function contains a function call to

itself within itself

• A recursive function has two parts
i) base case ii) general case

• The base case returns an answer that is known
e.g. return 1

• The general case contains the recursive call

• Each successive call should take you closer to
a situation that is known i.e. the base case

Recursive Structure

if (condition for which answer is known):

statement # base case

else:

 recursive function call # general case

Which line expresses the
base case?
def sum_to_n(n):

if n == 1:
 return 1

else:

 return n + sum_to_n(n-1)

9/24/2024

3

Visualisation

• Python Tutor is a
resource designed
to visualise what
happens when code
is executed.

• It can be used to
understand and
debug complex
code examples

Activity 1Pyth on Tu to r

Unwinding

• Code before the
recursive call is
executed in “forward
order”

• Calculations after the
recursive call are
executed in “reverse
order”

n n + sum_to_n(n-1) Return value

5 5 + 10 15

4 4 + 6 10

3 3 + 3 6

2 2 + 1 3

1 1

Stack Overflow

• What happens if we
forget the
base case?

• If we recursively call
too many functions
without returning, we
cause a stack
overflow error

Activ ity 2Trinket Link

9/24/2024

4

Factorial Activ ity 3Trinket Link

def recursive_factorial(n):

 if n == 0: # base case

 return 1

 else: # general case

 return n * recursive_factorial(n - 1)

print(recursive_factorial(4))

Can you trace this algorithm? Remember the
unwinding we learned on slide 8

Base Case
• The function call Factorial(4) should return the

value 24, because that is 4 * 3 * 2 *1.

• For a situation in which the answer is known,
the value of 0! is 1.

• So, the base case is

if n == 0:

 return 1

Activ ity 3Trinket Link

General Case

• The value of Factorial(n) can be written as
n * the product of the numbers from (n - 1) to 1

n * (n - 1) * ... * 1
or

n * Factorial(n - 1)

• Notice, that the recursive call Factorial(n - 1)
gets us "closer" to the base case of Factorial(0)

Activ ity 3Trinket Link

9/24/2024

5

Unwinding
• Factorial (0) doesn't

make a recursive cal l,
but returns a 1 , which
starts the 'unwind'
process

• Unti l Factorial (0) is
called, a stack of
uncompleted
calculations are stored

• Pay particular attention
to the returned va lue and
how that is used in the
previous call

Activ ity 3Trinket Link

n * Factorial(n - 1)

= 4 * factor ial 3

= 4 * (3 * factorial 2)

= 4 * (3 * (2 * factorial 1))

= 4 * (3 * (2 * (1 * factorial 0)))

= 4 * (3 * (2 * (1 * 1)))

= 4 * (3 * (2 * 1))

= 4 * (3 * 2)

= 4 * 6

= 24

Tail Recursion

def factorial(n):

if n==0:

 return 1

else:

 return n*factorial(n-1)

print(factorial(4))

def factorial(n, a = 1):

if n==0:

 return a

else:

 return factorial(n-1, n*a)

print(factorial(4))

• Tail recursion is when the call to itself is the last
action of the function .

Activ ity 4Trinket Link

Recursive vs
Iteration
• Any task accomplished with iteration can also

be achieved with recursion.

• The resulting code will probably be more
elegant, compact and simpler to implement.

• The iterative approach could be described as
more 'naive’.

• Recursive algorithms are often slower, use
more memory and less efficient.

Activ ity 5 Trinket Link

9/24/2024

6

Which is best?

def naive_factorial(n):

 result = 1

 while n > 0:

 result *= n

 n -= 1

 return result

def recursive_factorial(n):

 if n == 0:

 return 1

 else:

 return n * factorial(n - 1)

Activ ity 6 Trinket L ink

Recursive vs Iteration
Benefits Drawbacks

More natural to read Can run out of memory (i.e.
stack overflow)

Quicker to write More difficult to trace and
follow

Suited to certain problems, e.g.
Divide and conquer merge sort
& quick sort

Requires more memory than
an equivalent iterat ive program

Can reduce the size of a
problem with each call e.g.
binary search

Usually slower than iterative
methods

Conclusions

• Recursion provides an elegant method for
solving problems that can be divided into
smaller subproblems.

• While often more readable, recursive solutions
are not always the most efficient in terms of
memory and speed.

• Excessive recursion depth can exceed the call
stack limit and crash the program.

9/24/2024

7

Intended learning outcomes
By the end of this session, you will:

• Be able to explain the principles of recursion,
including the concepts of base case and
general case.

• Be able to implement recursive functions to
solve various computational problems.

• Be able to analyse and compare recursive and
iterative approaches to problem-solving.

• Be able to identify and address potential issues
such as stack overflow in recursive functions.

Game Board GameboardIsaac link

Extra Credit
1. Write a recursive function that returns the

sum of the digits of an integer.

2. Write a recursive function (use no while loops
or for loops) that prints all the elements of a
list of integers, one per line. The parameters
to the function should be a list of integers
and the size of the list.

3. Modify the previous function to print out the
elements in reverse order.

Extra Trinket L ink

9/24/2024

8

ISAAC boosters

Keep an eye out
for more student
booster events

Thank you

