
10/22/2024

1

Isaac Student Booster

Pathfinding
Algorithms

DO NOW:

Think: how did you work
out the quickest route to

school or college today?

Would that change if the
traffic was busy, or the

bus broke down?

What would the
algorithm look like for

this problem?

Learning Objectives

• Understand how the Dijkstra and A*
pathfinding algorithms work, including the use
of heuristics

• Use Dijkstra and A* on a given graph to find the
shortest path

• Understand the benefits and drawbacks of A*
over Dijkstra

From the OCR A-level Spec

• Candidates need to understand how the Dijkstra
and A* shortest path algorithms work (2.3.1)

• For both Dijkstra and A* they need to be able to:
• calculate the shortest path in a graph or t ree

• read and trace code – not covered today

• Candidates should apply their knowledge of
heuristics to solve problems (2.2.2)

10/22/2024

2

From the AQA A-level Spec

• Understand and be able to trace Dijkstra’s
shortest path algorithm (4.3)

• Be aware of applications of Dijkstra's shortest
path algorithm (4.3)

• Understand heuristic methods are often used
when tackling intractable problems (4.4)

Students will not be expected to recall the steps
in Dijkstra's algorithm, and don't need to know
the A* algorithm, although students must
understand heuristics.

Shortest Path

Many problems require us to
find the shortest path
between a set of points:

• satellite navigation

• internet packet routing

• finding the shortest length of
wire needed to connect pins
on a circuit board

Dijkstra’s shortest path
algorithm

Invented by Dutch
computer scientist
Edsger Dijkstra in 1956
to calculate the shortest
route from Rotterdam to
Gröningen.

10/22/2024

3

Edsger Dijkstra

“In computing, elegance is not a
dispensable luxury but a quality that

decides between success and failure"

Edsger Dijkstra

Dijkstra was a computing pioneer,
contributing to the development
of ALGOL-60, which influenced
Pascal and C and hence many modern languages.

He was a colourful character, rarely using a
computer in his academic work and assessed his
students through hours-long interviews instead of
papers or exams!

The graph data structure

Pathfinding a lgorithms process data
held in a weighted graph data
structure.

A gra ph consists of nodes
(also called vertices)

Nodes are connected by edges.
If these edges can be travelled in both
directions, this is an undirected gra ph.

In a weighted graph, edges carry a weight which cou ld
be the distance between cities, or the delay (latency)
between devices.

A B

C
D

6

37

5

10/22/2024

4

Dijkstra's Algorithm

Dijkstra's
Algorithm

• Dijkstra’s algorithm has one
motivation: to find the set of
shortest paths from a start
node to each of the other nodes on the graph.

• The cost of a path that connects two nodes is
calculated by adding the weights of all the
edges that belong to the path.

• The shortest path is the sequence of nodes, in
the order they are visited, which results in
the minimum cost to travel between the start
node and a given node.

Dijkstra's
Algorithm

When the algorithm has
finished running, it produces
a list that holds the following
information for each node:

• The node label

• The cost of the shortest path to that node
(from the start node)

• The previous node's label, in the shortest path

You can then backtrack through the previous
nodes to return the shortest path and its cost.

10/22/2024

5

Worked Example – Dijkstra

We will use Dijkstra now
to find the shortest path
from A to every other
node in this graph:

Node
Cost

(from start)
Previous

Step 1 – create the list
Create a table with
headings: node, cost
and previous node.

Add all nodes to the
list, giving start node
(A) a cost of zero,
all other costs are
infinity (∞)

Set all previous
nodes to none.

Node
Cost

(from start)
Previous

A 0 none

B ∞ none

C ∞ none

D ∞ none

E ∞ none

Node
Cost

(from start)
Previous

A 0 none

B ∞ none

C ∞ none

D ∞ none

E ∞ none

Step 2a – choose lowest
Make the lowest
cost unvisited node
the current node.

Examine nodes that
can be visited from
A, which are B and C.

10/22/2024

6

Node
Cost

(from start)
Previous

A 0 none

B ∞ none

C ∞ none

D ∞ none

E ∞ none

Step 2b – process node
The cost of going
from A to B is 8,
while A to C is 5.

Update the list with
these costs and
previous node A.

Node
Cost

(from start)
Previous

A 0 none

B ∞ 8 none A

C ∞ 5 none A

D ∞ none

E ∞ none

Node
Cost

(from start)
Previous

A 0 none

B ∞ 8 none A

C ∞ 5 none A

D ∞ none

E ∞ none

Step 2c – mark node visited
You have now
evaluated all routes
from the current node

Mark node A visited.

Node
Cost

(from start)
Previous

A 0 none

B ∞ 8 none A

C ∞ 5 none A

D ∞ none

E ∞ none

Node
Cost

(from start)
Previous

A 0 none

B ∞ 8 none A

C ∞ 5 none A

D ∞ none

E ∞ none

Step 3a – choose lowest again
Again, make the
lowest unvisited node
the current node.

C has the lowest
cost. Now evaluate
its neighbours…

10/22/2024

7

Step 3b – process node
C costs 5 so we add
this to the cost from
C to its neighbours

C-B costs 5 + 3 = 8

C-D costs 5 + 6 = 11

C-E costs 5 + 9 = 14

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D ∞ none

E ∞ none

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D ∞ 11 none C

E ∞ 14 none C

Step 3b – mark node visited
You have now
evaluated all routes
from the current node

Mark node C visited.

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D ∞ 11 none C

E ∞ 14 none C

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D ∞ 11 none C

E ∞ 14 none C

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D 11 C

E 14 C

Step 4a – choose lowest again
Again, make the
lowest unvisited node
the current node.

B has the lowest cost.
Now evaluate its
neighbours…

10/22/2024

8

Step 4b – process node
B costs 8 so we add
this to the cost from
B to its neighbours

.

D costs 8 + 1 = 9

We don't revisit A and C

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D 11 9 C B

E 14 C

Step 4c – mark node visited
You have now
evaluated all routes
from the current node

.

Mark node B visited.

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D 11 9 C B

E 14 C

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D 11 9 C B

E 14 C

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D 9 B

E 14 C

Step 5a – get lowest yet again!
Again, make the
lowest unvisited node
the current node

D is the lowest cost
unvisited node. We
evaluate its neighbours…

10/22/2024

9

Step 5b – process node
D costs 9, so we add
this to the cost from
D to its neighbours…

E costs 9 + 2 = 11

We update E in the
table with 11 and D:

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D 9 B

E 14 C

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D 9 B

E 14 11 C D

Step 5c – mark visited
You have now
evaluated all routes
from the current node

Mark node D visited.

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D 9 B

E 14 11 C D

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D 9 B

E 14 11 C D

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D 9 B

E 11 D

Step 6 – and again!
Only E remains, which
has no unvisited
neighbours.

So we can just mark
node E visited.

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D 9 B

E 11 D

10/22/2024

10

The final table
All nodes have now
been visited…

We can work backward from any node to find the
shortest path from A e.g. E's previous node is D etc.
The shortest path to E is thus ABDE costing 11.

Node
Cost

(from start)
Previous

A 0 none

B 8 A

C 5 A

D 9 B

E 11 D

Activity 1 – Isaac Questions

Open bit.ly/iapath23 and
answer the two questions.

You will need to sign in to
Isaac Computer Science or
register for a free account if
not done already.

The questions are provided
on Handout 1 if this is not
possible.

Dijkstra plus heuristics

A* Algorithm

10/22/2024

11

The problem with Dijkstra

This is just a small
segment of
Google Maps.

How long would
Dijkstra's algorithm
take to traverse this?

Dijkstra's algorithm becomes intractable on
large graphs. How can we change the algorithm
to make the problem tractable again?

The solution - heuristics

Heuristics help obtain good
enough solutions where a
perfect solution would take
too long (or is intractable).

In this diagram we can see
the Manhattan distance
(red line) and Euclidean
distance (green line) which
give estimates of the
remaining distance.

Image by Psychona ut via wikimedia

Heuristics:
Pros and Cons

Using heuristics trades
accuracy for speed.

A heuristic algorithm
chooses paths that are likely
to yield a good result (but
we may thus discount the
optimal path!)

Compare these two
animations, what do you
notice?

Fr om W ikiped ia B y Sub h83 - Own w ork, CC B Y 3. 0,

A*

Dijkstra

10/22/2024

12

Worked Example – A*

We will use A* now to
find the shortest path
from A to F in this
diagram.

(Note that A* cannot
cost all routes to all
nodes, only a route to
a chosen destination)

Adding the heuristics

First, we need to add
heuristics. In this
example they are
provided for you.

You may need to
calculate them
yourself (e.g. using
Manhattan distance)
– an exam question
will state this.

g-score and f-score

In Dijkstra's algorithm,
you kept track of the
cost of the shortest
path so far to a given
node. We called this
"cost from start".

In the A* algorithm,
this is called the
g-score.

node
Cost

(from start)
previous

A 0 none

B ∞ none

C ∞ none

D ∞ none

E ∞ none

F ∞ none

g-score

10/22/2024

13

g-score and f-score

We also need an
f-score: the sum of
the cost so far
(g-score) and the
heuristic (the
estimated remaining
cost from this node).

It is this f-score that
we use to select the
next current node.

Question:
Finding g-score and f-score

Question:

When finding the
shortest path from A
to F, we visit B first.
What g-score and
f-score does B get?

Answer:

g-score: 10

f-score: 25

Step 1 – create the list
Create a list similar
to Dijkstra but with
columns for:

• g-score
cost so far to this
node, or g(node)

• f-score
current best guess
of cost to target via
this node, also
called f(node)

Node g-score f-score Previous

A 0 10 none

B ∞ ∞ none

C ∞ ∞ none

D ∞ ∞ none

E ∞ ∞ none

F ∞ ∞ none

10/22/2024

14

Step 2a – choose lowest f()
In the unvisited list, A
has the lowest f-score

Check A's unvisited
neighbours: B, C, D.

Node g-score f-score Previous

A 0 10 none

B ∞ ∞ none

C ∞ ∞ none

D ∞ ∞ none

E ∞ ∞ none

F ∞ ∞ none

Node g-score f-score Previous

A 0 10 none

B ∞ ∞ none

C ∞ ∞ none

D ∞ ∞ none

E ∞ ∞ none

F ∞ ∞ none

g(B) = g(A) + AB = 0 + 10 = 10

f(B) = g(B) + h(B) = 10+15 = 25

g(C) = g(A) + AC = 0 + 12 = 12

f(C) = g(C) + h(C) = 12 + 5 = 17

g(D) = g(A) + AD = 0 + 5 = 5

f(D) = g(D) + h(D) = 5 + 5 = 10

Step 2b – process node

Node g-score f-score Previous

A 0 10 none

B ∞ 10 ∞ 25 none A

C ∞ 12 ∞ 17 none A

D ∞ 5 ∞ 10 none A

E ∞ ∞ none

F ∞ ∞ none

You have now
evaluated all routes
from the current node

Mark node A visited.

Step 2c – mark node visited

Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 12 17 A

D 5 10 A

E ∞ ∞ none

F ∞ ∞ none

Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 12 17 A

D 5 10 A

E ∞ ∞ none

F ∞ ∞ none

10/22/2024

15

Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 12 17 A

D 5 10 A

E ∞ ∞ none

F ∞ ∞ none

Step 3a – choose lowest f()
D now has the lowest
f-score.

Check D's unvisited
neighbours: C, F.

Step 3b – process node

g(C) = g(D) + DC = 5 + 6 = 11

f(C) = g(C) + h(C) = 11+5 = 16

g(F) = g(D) + DF = 5 + 14 = 19

f(F) = g(F) + h(F) = 19 + 0 = 19

Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 12 17 A

D 5 10 A

E ∞ ∞ none

F ∞ ∞ none

Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 12 11 17 16 A D

D 5 10 A

E ∞ ∞ none

F ∞ 19 ∞ 19 none D

You have now
evaluated all routes
from the current node

Mark node D visited.

Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 12 11 17 16 A D

D 5 10 A

E ∞ ∞ none

F ∞ 19 ∞ 19 none D

Step 3c – mark node visited

Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 12 11 17 16 A D

D 5 10 A

E ∞ ∞ none

F ∞ 19 ∞ 19 none D

10/22/2024

16

Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 11 16 D

D 5 10 A

E ∞ ∞ none

F 19 19 D

Step 4a – choose lowest f()
C now has the lowest
f-score.

Check C's unvisited
neighbours: E, F.

Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 11 16 D

D 5 10 A

E ∞ ∞ none

F 19 19 D

Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 11 16 D

D 5 10 A

E ∞ 22 ∞ 32 none C

F 19 19 D

Step 4b – process node

g(E) = g(C) + CE = 11 + 11 = 22

f(E) = g(E) + h(E) = 22 + 10 = 32

g(F) = g(C) + CF = 22 + 8 = 30

30 is greater than F's current
g-score so don't change F row.

Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 11 16 D

D 5 10 A

E ∞ 22 ∞ 32 none C

F 19 19 D

Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 11 16 D

D 5 10 A

E ∞ 22 ∞ 32 none C

F 19 19 D

Step 4b – process node

You have now
evaluated all routes
from the current node

Mark node C visited.

10/22/2024

17

Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 11 16 D

D 5 10 A

E 22 32 C

F 19 19 D

The unvisited node
with the lowest f-score
is now F, our target
node.

Step 5 – choose lowest f()

As F is the target, no
need to evaluate its
neighbours.

Just mark F visited.

Step 5a – mark visited

Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 11 16 D

D 5 10 A

E 22 32 C

F 19 19 D

Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 11 16 D

D 5 10 A

E 22 32 C

F 19 19 D

Note that we don't
need to visit B and E,
those paths have been
"pruned" using the
heuristics.

The final table
Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 11 16 D

D 5 10 A

E 22 32 C

F 19 19 D

10/22/2024

18

F's previous node is D,
D's previous node is A

Therefore, the
"shortest path" is
A → D → F
costing g(F) = 19.

Shortest Path from A → F
Node g-score f-score Previous

A 0 10 none

B 10 25 A

C 11 16 D

D 5 10 A

E 22 32 C

F 19 19 D

Another Worked Example
of A* in action

Worked Example 2 –
A* Traversal from A to D

This is a partially-completed traversal.

We have visited A.

Activity: Verify the table is correct so far.

A B

C
D

12 6

4
0

6

37

5

Node g-score f-score Previous

A 0 12 none

B 6 12 A

C 7 11 A

D ∞ ∞ none

10/22/2024

19

Activity 2 – Complete the A*
Traversal on Handout 1

Now complete the table using the A* algorithm to
find a route from A to D.

Use Handout 1 Activity 2

A B

C
D

12 6

4
0

6

37

5

Node g-score f-score Previous

A 0 12 none

B 6 12 A

C 7 11 A

D ∞ ∞ none

Activity 2 – Solution

We evaluate C and reach our destination D, so we
stop and return the route A → C → D costing 12.

What do you notice?

A B

C
D

12 6

4
0

6

37

5

Node g-score f-score Previous

A 0 12 none

B 6 12 A

C 7 11 A

D 12 12 C

Practice Gameboard

10/22/2024

20

Activity 3 –
Isaac Gameboard

Now complete the
gameboard on Isaac
Computer Science at
bit.ly/iapathfinding

Use the hints to help
you.

Recap Learning Objectives

• Understand how the Dijkstra and A*
pathfinding algorithms work, including the use
of heuristics

• Use Dijkstra and A* on a given graph to find the
shortest path

• Understand the benefits and drawbacks of A*
over Dijkstra

Questions?

Check for more ISAAC boosters

Keep an
eye out
for more

student
booster
events

10/22/2024

21

