W Isaac

¥4 Science

Functional
Programming

3/12/2024

Intended learning outcomes

By the end of this session, you will:

« be able to explain the principles of functional
programming, including the avoidance of mutable data
and the concept of functions as first-class citizens.

« be able to demonstrate the ability to apply functional
programming concepts by constructing and using first-
class functions in code exercises.

« be able to analyse code to identify and critique the use
of recursion and side-effects, contrasting functional
and imperative programming paradigms.

4
d

Introduction

« Functional programming is a programming paradigm
that treats computation as the evaluation of
mathematical functions and avoids changing-state and
mutable data.

« In functional programming, functions are first-class
citizens, meaning they can be passed as arguments to
other functions, returned as values from other
functions, and assigned to variables.

4
]

Introduction

« Functional programming languages, encourage
programming without side-effects.

« Recursion is a fundamental concept in functional
programming, often used instead of traditional looping
constructs.

3/12/2024

C
¥ n & | A
Key Words
* Functional Programming
« First-Class Functions
* Side-Effects
* Recursion
* Inmutable Data
C

4
d

Understanding Function
Type

Definition:

« A function, represented by f; has a specific type
denotedasf: A — B

Components:

+ Domain (A): The set of possible input values.

+ Co-domain (B): The set where the output
values are chosen.

r v L _———

M

3/12/2024

Understanding Function
Type

Example:

+ Let's consider a function that maps students to
their grades:

f: Student — Grade

+ Here, the domain is 'Student’ (the set of all
students) and the co-domain is ‘Grade' (the
possible grades a student can receive).

C

r v I _——

Key Points:

* A function takes each element from the
domain and assigns it an output in the co-
domain.

* Not every value in the co-domain needs to be

an output, but every function output must be in
the co-domain.

4
d

Example

« Domain (Student): Alex, Bob, Carol, Dan, Ellie

« Co-domain (Grade): A,B,C,D, F

* Now, let's say the following mappings exist:
* Alex — A
*« Bob —»B
« Carol - C
« Dan —»B
« Elie — A

4
]

Python Example & amms) =0

Simple grading system
def grade_student(score):
This function takes a student's score as an input and returns the grode.
)

Domain: @ <= score <= 10
Co-domain: {"F", "l "

return "F"
elif 58 <= score < 60@:
return "D"
elif 60 <= score < 70:
return "C"
elif 78 <= score < 90:
17 return "B"
18- else:
19 return "A"

1
2
3
4
5
6
7
8
9
10 if score < 5@:
1
1z
13
14
15
16

4
L

3/12/2024

Functions as First-Class
Objects

« In functional programming, functions are
considered as first-class citizens.

» When a functionis treated as a "first-class
object”,it means it can be used inthe same
ways as other data types.

* This means they can be passed as arguments,
returned from other functions, and assigned to

variables or data structures. C
| n 4 L A
1. Stored ina o

$% tiny co/pannz | @ Activiy 2a)

variable

* You can assign a functionto a variable.

def greet():
return "Hello!"

say_hello = greet
print(say_hello()) # This will print "Hello!"

4
]

3/12/2024

2. Passed as an _ 5
argument to & tinco/onanz | [S[Actviy 22)
another function

def square(x):
return x * x

def cube(x):
return x * x * x

def compute(func, value):
return func(value)

print(compute(square, 4)) # This will print 16
print(compute(cube, 3)) # This will print 27

C

¥ > 1

3. Returned from .
a function gy Ly co/pnanvy Qm

def multiplier(factor):
def multiply_by_factor(x):
return x * factor
return multiply_by_factor

double = multiplier(2)
print(double(5)) # Prints 10

4
d

4. Data Structures @omwes)

3 def add(x, y):
4 return x + y

5
6 def subtract(x, y):
7 return x - y

8
9-def multiply(x, y):

10 return x * y
1
12- def divide(x, y):
13 return x / y
14

15 # Store functions in a list
16 operations = [
17 ("+", add),

18 ("-", subtract),
19 ", multiply),
20 /", divide)
21]

Partial Functions &raww) B=m

Function Multiply(x, y) ‘
from functools import partial

1
2
3 def multiply(x, y): '
; return x *y [Pre fily=2
6 double = partial(multiply, y=2)
7 print(double(4)) # Outputs: 8

L

New Function double(x)

4
L

Composition of Functions ’

» Function composition is the process of L]
applying one function to the result of another g =x+3 |
function. T

* Given two functions f and g, the composition
of fand g is denoted as f o g and defined as: J !

fatx))

(Fea)(® = (Fg(x) T
Let: A
flx)=x2 16+ 3) = (x + 3)°2
gx) =x+3 N
then:
(fo) = f(g(0) = f(x+3) = (x +3)? |- i

Output: (x + 3)°2

r a 2 i ——

3/12/2024

e

Image Processing &aems))

1 fron PIL ingort Image, ImageFilter
2 # Define the individual transformations ~ren
3. def to_grayscale(ing):

4 return img.convert("L")
5

6 def apply_blur(ing): .

T eturn img. Filter(InageFilter. BLUR) j N

4 !-.

9-def reduce_size(img):

18 width, height s 1.1pg @
1 return ing.resize((width // 2, height /7 2))

1z

134 Now, to compose the functions -

14-def process_image(ing): ®
15 eturn reduce_size(apply_blur(to_grayscale(img)))

16

17 # Lood on imoge and apply oll tromsformations

18 image = Imoge.open(bird. jpg')
19 processed_image - process_inage(inage}

4
]

Immutable Data &oewe) 79

In functional programming ...

« data is immutable, it cannot be changed once it's
created. Instead of modifying the original data, new
data is produced whenever a change is required.

« this feature leads to more predictable and
maintainable code in functional programming. It
encourages the use of functions and recursion to
manipulate data rather than updating variables in
place.

r v I _——

Pure functions .
& Side Effects o) 1750

In functional programming ...

« functions should be pure, meaning their output
should solely depend on their input, and they should
not produce side effects.

« a side effect is any operation that modifies some

state outside the function, like altering global
variables or external files.

« A pure function shouldn’t have any observable
effects, besides returning a value to the caller.

4
d

Higher Order . = —
Functions . =

Functions that accept other functions as

arguments, return functions, or both.

» map(function, list): Applies a function to each
item of the list.

« filter(function, list): Returns items fromthe list
for which functionreturns True.

« reduce*(function, list): Continually applies a
function to the elements of a list, reducing it to
a single value

*The term reduce and fold are interchangeable c

r v L _———

3/12/2024

Head and Tail . Y= —
Operations e =

What are Head and Tail?
« Head: The first element of alist.
* Tail: The remaining elements after the head.

Example:
For thelist[1,2, 3, 4],
Head =1
Tail=[2, 3, 4]

4
L

3/12/2024

Procedural vs functional
gy Co/pXWyVZ fE Activity 7

programming

16 Functional Programeimg
17 from functools import partial

1

1 # Irperstive Programming 15 def mltiplyCval, miltiplier):

2 numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] » return val * multiplier
2

4 # Double all numbers in the list 22 def is_even(val):

5 for 1 in rangaClen(numbers)): Z reurnval K2 - @

6 numbers[i] = numbers[i] * 2 24

H 25 nubers - (1, 2, 3, 4, 5, 6, 7, § 9, 18]

8 # Filter out even numbers i

9 even_nurbers = (]

10 for num in nusbers
if num % 2 == @:

27 # Create a new function that doubles values
23 double - partial(multiply, mltiplier-2)
23

: 30 # Dousling all numbers in the list
even_numbers . append(num) 31 doubled nutbers = list(nop(double, rumbers))
1 32
14 print(even_numbers) 33 # Filtering

8 ot even numbers
34 even_numbers - List(filterCis_even, doubled_runbers))
35

36 printCeven_nutbers)

4
d

Intended learning outcomes

By the end of this session, you will:

« be able to explain the principles of functional
programming, including the avoidance of mutable data
and the concept of functions as first-class citizens.

« be able to demonstrate the ability to apply functional
programming concepts by constructing and using first-
class functions in code exercises.

« be able to will analyse code to identify and critique the
use of recursion and side-effects, contrasting
functional and imperative programming paradigms.

4
]

3/12/2024

Isaac Computing & m=w) [F5o
Functional Programming Booster Session

P

L]

o'

o™

o

o ™

o~

o -

r v J A

CheckformoreISAAC boosters

Keep an eye out
for more student
booster events

Thank you

“ ¥ Science

LEARNING

" L >><< STEM

