
10/22/2024

1

Isaac Student Booster

Assembly
Language

DO NOW:

What does this program
do?

INP
STA 99

INP
ADD 99
OU T

What does "99" mean?

How w ould we w rite th is in
Python or JavaScript?

Learning outcomes

By the end of this session you will be able to:

• Understand the purpose and characteristics of
high- and low-level languages

• Identify and explain the features of assembly
language

• Be able to interpret, complete and create
simple programs in Little Man Computer
Assembly language

Isaac Computer
Science

During this course you may require access to the
Isaac Computer Science platform.

Accounts are free to create. You will be able to:

- use the platform to study

- test your knowledge with self-marking questions

- complete Gameboards set by your teacher

10/22/2024

2

Programming
in machine code

• The first programmers had to
program in machine code.

• Machine code is a binary code representing the
instructions a particular CPU can execute

• Question: what disadvantages are there to
coding in binary?
• Slow to code
• Hard to learn and debug
• Easy to make mistakes

MACHINE CODE

1110 0011 1010 0000

1110 0010 0100 0011

1110 0000 1000 0000

1110 0000 0000 0011

Assembly language

Uses mnemonics, i.e. abbreviations to represent
the instructions, e.g.

MOV – move data

CMP – compare values

For example:
MOV R3, #5

which instructs the CPU to move 5 to register 3.

Register 3 is a physical hardware location inside
the CPU, i.e. a real set of logic circuits.

How does "Register
3" differ from a

variable, say "age" in

a Python program?

High-level programming
languages

• To speed up the writing of programs, high-
level programming languages were
developed. Including
• FORTRAN – scientific

• COBOL – commercial →

• C++, Python, Java, Ruby, Visual Basic and
JavaScript are modern high-level
programming languages.

IDENTIFICATION DIVISION.
PROGRAM-ID. I DSAMPLE.
ENVIRONMENT DIVI SION.

PROCEDURE DIVISION.
 DISPLAY 'HELLO WORLD'.

 STOP RUN.

10/22/2024

3

Hierarchy of languages

Neither high-level code nor
assembly code can run on
the hardware directly and
must be translated.

HLLs are compiled or
interpreted. Assembly
language is assembled. Hardware

Machine code

Assembly language code

High Level Language code

Levels of abstraction

High level code
is so-called
because it sits
at a high level
of abstraction
from the binary
code.

var1 = input('num?')
var2 = input('num?')

print(var1 + var2)

High level of
abstraction

INP

STA 99

INP

ADD 99

OUT

Low level of
abstraction

0000001110000101
0000000110001111

0000001110000101
0000000011000111
0000001110000110

No abstraction

Activity – Evaluating
Low-level languages

Spend 5 minutes using the Isaac platform to research
the advantages and disadvanta ges of using low-le vel
la nguages. Record your f indings on Handout 1.

isaaccomputerscience.org/concepts/sys_proglang_low_level

Be ready to feedback using the text chat faci lity.

Ha ndout 1

Advantages of
low-le vel languages

Disa dvantage s of
low-le vel languages

10/22/2024

4

Solution – Evaluating
Low-level languages

Ha ndout 1

Advantages of low-le vel languages

• They allow a programmer to create
optimised programs

• When a computer system has

limited resources (processing power and
memory) low-level languages allow a
programmer to more directly control how the
resources are used

Solution – Evaluating
Low-level languages

Ha ndout 1

Disa dvantages of low-level languages

• It's more difficult to write programs in low-
level: need to have good understanding
of hardware

• Not portable, specific to a particular
instruction set.

• No libraries of functions that can be imported
• No data structures such as arrays and

records.

• opcode is the inst ruction tha t specif ies which operation
the processor shou ld perform

• operand is a va lue that the opcode w ill operate on
– it might be a number or an address in m emory

Instruction sets

• Assembly langua ge is processor-specif ic.

• Each processor (CPU) has its own instruct ion set with
a l imited number of opcodes that are understood by
the CPU’s control unit.

• Instructions are made of an opcode
and may be fol lowed by an item
of data , called the operand.

e.g. STA 3 =
STA (opcode)
3 (operand)

10/22/2024

5

Little Man
Computer (LMC)

• The LMC is a simple
model of a CPU.

• "LMC" because we imagine that inside the
CPU is a little man running around, executing
instructions stored in boxes which represent
memory locations (RAM)

• The LMC models the architecture of a CPU,
with its own simple instruction set.

peterhigginson.co.uk/lmc/

• Recall that an instruction set is the complete set of the

instructions (opcodes) that can be executed by a processor.
• Instructions are made of an opcode and sometimes an item of

data called the operand.

An example of a machine code instruction is 0100001

where 010 is the opcode and 0001 the operand

• The LMC uses opcodes and operands in denary rather than
binary to make it easier to follow.

• In a “real” processor the opcodes and operands are stored and
processed in binary and usually documented in hexadecimal.

Opcode and operand

LMC Instruction Set

Instruction Mnemonic Numeric
Code

Load LDA 5xx

Store STA 3xx

Add ADD 1xx

Subtract SUB 2xx

Input INP 901

Output OUT 902

End HLT 000

Branch if zero BRZ 7xx

Branch if zero or positive BRP 8xx

Branch always BRA 6xx

Data storage DAT

10/22/2024

6

LMC Instruction Set

Instruction Mnemonic Numeric
Code

Load LDA 5xx

Store STA 3xx

Add ADD 1xx

Subtract SUB 2xx

Input INP 901

Output OUT 902

End HLT 000

Branch if zero BRZ 7xx

Branch if zero or positive BRP 8xx

Branch always BRA 6xx

Data storage DAT

Opcodes for
writing programs
using sequence,
input and output

LMC Instruction Set

Instruction Mnemonic Numeric

Code

Load LDA 5xx

Store STA 3xx

Add ADD 1xx

Subtract SUB 2xx

Input INP 901

Output OUT 902

End HLT 000

Branch if zero BRZ 7xx

Branch if zero or positive BRP 8xx

Branch always BRA 6xx

Data storage DAT

Opcodes for
writing
programs using
selection

LMC Instruction Set

Instruction Mnemonic Numeric
Code

Load LDA 5xx

Store STA 3xx

Add ADD 1xx

Subtract SUB 2xx

Input INP 901

Output OUT 902

End HLT 000

Branch if zero BRZ 7xx

Branch if zero or positive BRP 8xx

Branch always BRA 6xx

Data storage DAT

Opcodes for
writing
programs using
iteration

10/22/2024

7

LMC Instruction Set

Instruction Mnemonic Numeric
Code

Load LDA 5xx

Store STA 3xx

Add ADD 1xx

Subtract SUB 2xx

Input INP 901

Output OUT 902

End HLT 000

Branch if zero BRZ 7xx

Branch if zero or positive BRP 8xx

Branch always BRA 6xx

Data storage DAT

Opcode used to
reserve memory
for data (variables)

Assembling LMC code

Let's assemble an example program:

LDA 98

SUB 99

OUT

HLT

Mnemonic Numeric

Code

LDA 5xx

STA 3xx

ADD 1xx

SUB 2xx

INP 901

OUT 902

HLT 000

BRZ 7xx

BRP 8xx

BRA 6xx

DAT

598
299
902
000

Activity 2 – Assembling
and Disassembling

Use Handout 2.

a) Assemble this program into denary
codes:

a) Disassemble th is program back to
mnem onics:

INP
STA 99
OUT

HLT

901
388
284

587
902

000

Mnemonic Numeric

Code

LDA 5xx

STA 3xx

ADD 1xx

SUB 2xx

INP 901

OUT 902

HLT 000

BRZ 7xx

BRP 8xx

BRA 6xx

DAT

Ha ndout 2

10/22/2024

8

Activity 2 ANSWERS –
Assembling and Disassembling

Use Handout 2.

a) Assemble this program into denary
codes:

a) Disassemble th is program back to
mnem onics:

INP
STA 99
OUT

HLT

901
388
284

587
902

000

Mnemonic Numeric

Code

LDA 5xx

STA 3xx

ADD 1xx

SUB 2xx

INP 901

OUT 902

HLT 000

BRZ 7xx

BRP 8xx

BRA 6xx

DAT

901
399
902

000

INP
STA 88
SUB 84

LDA 87
OUT

HLT

The Little Man Computer

https://peterhigginson.co.uk/lmc/

10/22/2024

9

LMC Registers

• Program Counter (PC): stores address of next instruction in RAM
to fetch an instruction from (0 to 99)

• Instruction Register (Current Instruction Register or CIR): stores
the first digit of the instruction read from memory, the op-code,
which contain the instruction to be performed

• Address Register (Memory Address Register or MAR): stores the
bottom two digits of the instruction, the operand, this contains an
address which is associated with the instruction.

• Accumulator: stores the results of the last operation (used as a
Flag status register for branch instructions) (-999 to 999) from the
ALU

• Memory Data Register (MDR/MBR) – not shown in LMC: stores
the contents found at the RAM address held by the MAR or data
which is to be transferred to that RAM address.

LMC FDE cycle

FETCH:

1. Check the Program Counter (PC) for the address of the

next instruction in RAM

2. Fetch the instruction from that memory address.

3. Increment the Program Counter (add 1 to PC so that it

contains the RAM address number of the next instruction.)

LMC FDE cycle

DECODE:

4. Split the instruction just fetched into opcode and operand

5. Store the opcode in the instruction register

6. Store the operand in the address register

10/22/2024

10

LMC FDE cycle

EXECUTE:

7. Execute the instruction based on the opcode given, using

the address register (operand) as necessary.

a. Load d ata from RAM if executing an LDA instruction, store data in

RAM if executing an STA instru ct ion.

b. Store the result o f arithmetic or LDA operation s in th e accumulator.

c. If the instruction is a BRA, or a BRP/ BRZ and the condit io n is m et,

upda te the program co unter with the contents of th e ad dress

register (opera nd).

8. If instruction is HLT (000) then stop, else return

to the Fetch phase.

CPU with 4 registers

RAM with 100 memory locations

10/22/2024

11

Output box

Input box

Type instructions
here then Submit
to check syntax

ASSEMBLE INTO RAM first, and then RUN

Worked Example 1

Let's assemble
and run this
program

Mnemonic Machine

code
INP 901
OUT 902
HLT 000

10/22/2024

12

Worked Example 1

It's now
assembled.

We can see it in
RAM here.

Mnemonic Machine

code
INP 901
OUT 902
HLT 000

Demonstration
Mnemonic Machine

code
INP 901
OUT 902
HLT 000

Worked Example 2 –
Add 2 numbers

We only have one
accumulator and INP
always overwrites the
accumulator. So the
pseudocode is:

input num1

store num1 in RAM

input num2

add num1 from RAM

output

halt

In LMC assembly
this would be…

INP

STA 99

INP

ADD 99

OUT

HLT

10/22/2024

13

Activity –
Programming with the LMC

Now it’s time for you to begin programming in
assembly language using the LMC.

Visit zigzageducation.co.uk/lmc

or peterhigginson.co.uk/lmc/

On Handout 3 complete Activities 1 and 2

You have 8 minutes!

Ha ndout 3

ANSWERS: Activity 1

Modify:
INP

OUT

STA 9

HLT

Make:
INP

STA 97

INP

STA 98

INP

STA 99

OUT

HLT

Ha ndout 3

ANSWERS: Activity 2

Modify:
INP

STA 99

INP

SUB 99

OUT

Make:
INP

STA 99

INP

ADD 99

STA 99

INP

SUB 99

OUT

Ha ndout 3

10/22/2024

14

"Variables" in the LMC (DAT)

• A label containing a DAT statement works as a
variable, it labels a memory address with a text
identifier.

one DAT 1

creates a label called one for the next free memory
location and stores in it the value 1.

num DAT
creates label called num for the next free memory
location and does not overwrite its contents

Branching in the LMC

• Branching uses la bels and the branch commands to
alter the order in which the instructions are executed.

• It achieves th is by changing the program counter.

• BRZ and BRP branch depending upon the value
current ly stored in the accumulator and can be used
as “if” conditions to allow selection between two
possible paths through the program.

Branching and labels

• A label to the left of the instruction is converted to the
memory address of the instruction or data.

• A label to the right of the instruction takes on the value of
the memory address labelled previously.

loop INP

loop is the label and when assembled, resolves to the

memory address where the instruct ion INP is stored.

BRA loop

loop will resolve to the location we labelled earlier , so the

program will loop back to the loop INP instruction

Ha ndout 3

10/22/2024

15

Branching to implement a loop

Predict what this
code does:

This block of code
will loop forever, and
the output will be:

10

9

8

etc… and it won't stop at 1 but continue through
zero into the negative numbers!

LDA TEN

START OUT

SUB ONE

BRA START

ONE DAT 1

TEN DAT 10

Implementing a
condition-controlled loop

If we want to stop
this loop running
forever, we can
change BRA to BRP
(branch if positive or
zero).

Now what will it
output?

10, 9, 8, …, 0.

LDA TEN

START OUT

SUB ONE

BRP START

ONE DAT 1

TEN DAT 10

Conditions other than ACC = 0

What if we want to count
up from zero to nine? i.e.
implement this
pseudocode →

We can't directly compare
the accumulator with 10.
We only have BRZ and
BRP to play with.

What can we do?

count = 0

limit = 10

repeat

 output count

 count = count + 1

until count == limit

10/22/2024

16

Subtract limit then
branch if zero

Let's make a slight
change to our
pseudocode:

Now we can code this:

LDA TEN

START OUT

SUB ONE

STA COUNT

SUB LIMIT

BRZ END

LDA COUNT

BRA START

END HLT

ONE DAT 1

TEN DAT 10

COUNT DAT

LIMIT DAT

count = 0

limit = 10

repeat

 output count

 count = count + 1

until count == limit

count = 0

limit = 10

repeat

 output count

 count = count + 1

 temp = count - limit

until temp == 0

save count

subtract limit

break out if 0

reload count

loop back

Activity continued –
Programming with the LMC

Using zigzageducation.co.uk/lmc or

peterhigginson.co.uk/lmc/

On Handout 3 complete Activities 3 and 4.
You have 10 minutes!

Ha ndout 3

ANSWERS: Activity 3 & 4

Predict:
 INP

 ADD FIVE

 OUT

FIVE DAT 5

Inputs a number, adds
five, outputs the result

Predict:
BEG INP

ADD TEN

OUT

BRA BEG

TEN DAT 10

Inputs a number, adds
ten, outputs the result
then starts again. Runs
forever.

Ha ndout 3

10/22/2024

17

ANSWERS: Activity 4

Modify:
LOOP LDA START

 OUT

 SUB ONE

 STA START

 BRP LOOP

 HLT

START DAT 5

ONE DAT 1

Make:
INP

STA START

LOOP LDA START

OUT

SUB ONE

STA START

BRP LOOP

HLT

START DAT

ONE DAT 1

Ha ndout 3

Branching to implement
selection

Consider this
pseudocode:

if a >= b then

 output 1

else

 output 2

How can we use
SUB and BRP to
implement this?

Let's rewrite as a
"subtract and
compare to zero"

a = a - b

if a >= 0 then

 output 1

else

 output 2

Branching to implement
selection

Let's implement this
code fragment in
LMC assembly:

a = a - b

if a >= 0 then

 output 1

else

 output 2

 SUB B

 BRP ABIG

 LDA B

 OUT

 BRA END

ABIG LDA A

 OUT

END HLT

Notice that the
else and then

bra nches have
swapped over!

This is the
simplest way

to code
if-then-else.

10/22/2024

18

Activity continued –
Programming with the LMC

Using zigzageducation.co.uk/lmc or

peterhigginson.co.uk/lmc/

On Handout 3 complete Activity 5
and if time the Challenge activities 6 and 7.

You have 8 minutes!

Ha ndout 3

ANSWER:
Activity 5

Write an LMC
program that
outputs the larger
of two input values
(using select ion)

INP

STA NUM1

INP

STA NUM2

SUB NUM1

BRP SEC

LDA NUM1

OUT

HLT

SEC LDA NUM2

OUT

HLT

NUM1DAT

NUM2DAT

ANSWERS: Challenges

Task 6 was
to multiply
two input
numbers:

INP // input multiplicand

 STA NUM1 // store as num1
 INP // input multiplier

 STA NUM2 // store as num2

LOOP LDA TOTAL // load running total (0)

 ADD NUM1 // add multiplicand
 STA TOTAL // store running total

 LDA NUM2 // load multiplier

 SUB ONE // decrement by one
 STA NUM2 // store multiplier

 SUB ONE // we want to stop at 1 not 0

 BRP LOOP // if multiplier > 0 loop

 LDA TOTAL // else load the total
 OUT // output it

 HLT // stop

NUM1 DAT
NUM2 DAT

ONE DAT 1

TOTAL DAT 0

10/22/2024

19

ANSWERS: Challenges

Task 7 was to check if a number is divisible
by five…

INP // input a number

LOOP BRZ TRUE // number must be div by 5 so jump to "TRUE"

 SUB FIVE // subtract 5

 BRP LOOP // if still positive or zero, loop back

 LDA ZERO // we've gone negative so not divisible by 5

 OUT // output a zero

 BRA END // jump to end

TRUE LDA ONE // this branch executes if we hit zero exactly

 OUT // output a 1

END HLT // halt

ZERO DAT 0

ONE DAT 1

FIVE DAT 5

Isaac Computer Science

• Each A level topic covered in depth, specific to
each exam board.

• Multiple choice self-marking questions and
videos for each topic.

• Free downloadable workbook containing over
450 questions, covering all the A level
computer science topics, with space to write
and work out answers.

Practice Gameboard

10/22/2024

20

Activity –
Isaac Gameboard

Now complete the
gameboard on Isaac
Computer Science at
bit.ly/ialowlevel
Use the hints to help
you.

Learning outcomes

By the end of this session you will be able to:

• Understand the purpose and characteristics of
high- and low-level languages

• Identify and explain the features of assembly
language

• Be able to interpret, complete and create
simple programs in Little Man Computer
Assembly language

Check for more ISAAC boosters

Keep an
eye out
for more

student
booster
events

10/22/2024

21

Thank You

