W Isaac

DO NOW:

¥4 Science

What does this program

Assembly .

Language STA 99

INP
Isaac Student Booster ADD 99
ouT
What does "99" mean?

How would we write this in
Python or JavaScript?

Learning outcomes

By the end of this session you will be able to:

* Understand the purpose and characteristics of
high- and low-level languages

« Identify and explain the features of assembly
language

* Be able to interpret, complete and create
simple programs in Little Man Computer
Assembly language

)
q

|
|saac Computer N~ Computer
Science Science

During this course you may require access to the
Isaac Computer Science platform.

Accounts are free to create. You will be able to:

- use the platform to study

- test your knowledge with self-marking questions
- complete Gameboards set by your teacher

M

v ! F

10/22/2024




Programming
in machine code

* The first programmers hadto
program in machine code.

* Machine code is a binary code representing the
instructions a particular CPU can execute
* Question: what disadvantages are there to
coding in binary?
* Slow to code MACHINE CODE
« Hard tolearn and debug 1110 0011 1010 0000
+ Easy to make mistakes 1110 0010 0100 0011
1110 0000 1000 0000
1110 0000 0000 0011 c

4
L

o
1! A

Assembly language

Uses mnemonics, i.e. abbreviations to represent
theinstructions, e.g.
MOV - move data How does "Register

3" differ froma
CMP - compare values variable, say "age" in
For example: 2 Pythenprogram?
MOV R3, #5 ’

which instructs the CPU to move 5 to register 3.

Register 3 is a physical hardware location inside
the CPU, i.e. a real set of logic circuits.

r a 2 i —

High-level programming
languages

* To speed up the writing of programs, high-
level programming languages were

developed. Including IDENTIFICATION DIVISION.

» FORTRAN - scientific :ze%‘némm"g%ﬁ
+ COBOL - commercial ©  procEURE DIVISION.

DISPLAY 'HELLO WORLD".
STOP RUN.

» C++,Python, Java, Ruby, Visual Basic and
JavaScript are modermn high-level
programming languages.

r v L A—

10/22/2024




Hierarchy of languages

Neither high-level code nor High Level Language code

assembly code can run on

the hardware directly and Assembly language code
must be translated.

HLLs are compiled or itie G2l

interpreted. Assembly

language is assembled. [N

N
L

Levels of abstraction
. High level of D Al
. = put('num?')
:—S“gg Igg"eelg()de abstraction print(varl + var2)
because it sits
at a high level e
of abstraction | Lowkvelof ki 99
from the binary | abstraction 20D 99
code. our
0000001110000101
0000000110001111
No abstraction 0000001110000101
0000000011000111
0000001110000110
r & i1 rF

Activity — Evaluating (T rewer)
Low-level languages

Spend 5 minutes using the Isaac platform to research
the advantages and disadvantages of using low-level
languages. Record your findings on Handout 1.

isaac computerscience.org/concepts/sys proglang low level
Be ready to feedback using the text chat facility.

Advantages of Disadvantages of
low-level languages low-le vel languages

4
]

10/22/2024




Solution — Evaluating [ remiet)
Low-level languages

Advantages of low-level languages

* They allow a programmer to create
optimised programs

* When a computer system has
limited resources (processing power and
memory) low-level languages allow a
programmer to more directly control how the
resources are used

C

10/22/2024

N
]

Solution - Evaluating ===
Low-level languages

Disadvantages of low-level languages

« It's more difficult to write programs in low
level: need to have good understanding
of hardware

» Not portable, specific to a particular
instruction set.

» No libraries of functions that can beimported

» No data structures such as arrays and
records.

r a 2 i ——

Instruction sets

» Assemblylanguage is processor-specific.

Each processor (CPU) has its own instruction set with
a limited number of opcodes that are understood by
the CPU’s control unit.

Instructions are made of an opcode
and may be followed by an item
of data, called the operand.

e.g.STA3 =
STA (opcode)
3 (operand)

opcode is the instruction that specifies which operation
the processor should perform

operand is a value that the opcode will operate on
- it might be a number or an address in memory




Little Man

10/22/2024

Computer (LMC)

* The LMC is a simple

model of a CPU.
* "LMC" because we imagine that inside the
CPU is a little man running around, executing
instructions stored in boxes which represent
memory locations (RAM)
» The LMC models the architecture of a CPU,
with its own simple instruction set.

peterhigginson. co.uk/Imec/

v 1! A

Opcode and operand

Recall that an instruction set is the complete set of the
instructions (opcodes) that can be executed by a processor.
Instructions are made of an opcode and sometimes an item of
data called the operand.

An example of a machine code instructionis 0100001
where 010 is the opcode and 0001 the operand

The LMC uses opcodes and operands in denary rather than
binary to make it easier to follow.

Ina ‘real” processorthe opcodes and operands are stored and
processed in binary and usually documented in hexadeci mal.

r a 2 i ——

LMC Instruction Set

Instruction Mnemonic | Numeric
Code
Load LDA 5xx
Store STA 3xx
Add ADD Txx
Subtract SuB 2xx
Input INP 901
Output our 902
End HLT 000
Branch if zero BRZ XX
Branch if zero or positive BRP 8xx
Branch always BRA 6xX
Datastorage DAT c
r v 1 ——




LMC Instruction Set

10/22/2024

Instruction Mnemonic | Numeric
Code
Load LDA 5xx Opcodes for
Store STA 3xx writing programs
Add ADD XX using sequence,
Subtract SUB 2 input and output
Input INP 901
Output out 902
End HLT 000
Branch if zero BRZ 7xx
Branch if zero or positive BRP 8xx
Branch always BRA 6XX
Datastorage DAT
C
r - L A
LMC Instruction Set
Instruction Mnemonic | Numeric
Code
Load LDA 5xx
Store STA 3xx
Add ADD Txx
Subtract SuB 2xx
Input INP 901
Output our 902
End HLT 000
Branch if zero BRZ 7xx Opcodes for
Branch if zero or positive BRP 8xx writing
Branch aways BRA 6xx programs using
Datastorage DAT c
r v ! A
LMC Instruction Set
Instruction Mnemonic | Numeric
Code
Load LDA 5xx
Store STA 3xx
Add ADD Txx
Subtract SuB 2xx
Input INP 901
Output our 902
End HLT 000
Branch if zero BRZ 7xx Opcodes for
Branch if zero or positive BRP 8xx writing
Branch aways BRA 6xx programs using
Datastorage DAT c
r v 1 ——




LMC Instruction Set

10/22/2024

Instruction Mnemonic | Numeric
Code
Load LDA 5xx
Store STA 3xx
Add ADD Txx
Subtract SuB 2XX
Input INP 901
Output our 902
End HLT 000
Branch if zero BRZ XX
Branch if zero or positive BRP 8xx Opcode used to
Branch always BRA 6xX reserve men’]ory
Datastorage DAT for data (variables)
¥ i1 r
Assembling LMC code
Let's assemble an exam ple program: Mnemonic | Numeric
Code
LDA 5xx
LDA 98 598 o ——
SUB 99 299 ADD XX
OUT 902 SE
HLT 000 ouT 902
HLT 000
BRZ 7XX
BRP 8xx
BRA 6Xx
DAT

Activity 2 — Assembling

and Disassembling

Use Handout 2.

a) Assemble this program into denary

Handout 2

codes: [yp
STA 99
out
HLT

a) Disassemble this
mnemonics:

program back t

901
388
284
587
902
000

Mnemonic | Numeric
Code
LDA 5xx
STA 3xx
ADD Txx
SUB 2XX
o INP 901
ouT 902
HLT 000
BRZ 7XX
BRP 8xx
BRA 6XX
DAT




10/22/2024

Activity 2 ANSWERS -
Assembling and Disassembling

Use Handout 2. Mnemonic | Numeric
a) Assemble this program into denary Codg
des: LDA 5xx
codes: fiNp 901 STA XX
STA99  [399
ouT 902 ADD xx
HLT 000 SUB 2XX
a) Disassemble this program back to INP 901
mnemonics: ouT 902
901 INP HLT 000
388 STA 88 BRZ XX
284 SUB 84 BRP 8XX
587 LDA 87
902 our BRA 6xx
000 HLT DAT

The Little Man Computer

Assembly Language Code

B 20 21 22 23 24'.25 26 27,28 '25. |
oo coolf ooo J ooo J ouo f ovo J oca J ooo ool cco
30 .31 32 3334, 35 36 47 .38 39 M

ool coolf ooo J ooo  ouo l ovo J ovo  ovo B oo B o

B 40 a1 42 43 44 15 46 47 48 40
[coo R ool ooo  0colf ooo ool 000 oo J 000§ oco
S 50 5152 53 .54 55 56 57 58 5o M
|coo R oo con B 0co 000§ ool 000 B ova 000 Joco

Bl oo 61 b2 63 '6d. 65 66 b7 .68 69
Jooo l coolf ooo J ooo l ouo l ouo J ovo oo B oo o
g 70 71 92 73 34 75760 77 70 15 M
fooo ool ooo l coo f oo ouo Jooo J oo oo Booo IR
B0 /1 ds 7 88 |

B2 831 '8d) 85
oo} coolf ooo J ooo a0 000 J ovo J ovo oo J oo

93 94 95 96, 97, 98, 95
fooofl ovoff ovoff ovo Jovo Joco Jooo

ASSEMBLE INTORAM] [RUN]  [STEP]

RESET| [LOAD] [HELP| |SELECT v

https: higginson.co.uk/Im c

4
]




|

LMC Registers

10/22/2024

2l
=4

Program Counter (PC): stores address of nextinstruction in RAM
to fetch an instruction from (0 to 99)

« Instruction Register (Current Instruction Register or CIR): stores
the first digit of the instruction read from memory, the op-code,
which contain the instruction to be performed

Address Register (Memory Address Register orMAR): stores the
bottom two digits of the instruction, the operand, this contains an
address which is associated with the instruction.

Accumulator: stores the results of the last operation (used as a
Flag status register for branch instructions) (-999 to 999) from the
ALU

Memory Data Register (MDR/MBR) — notshownin LMC: stores
the contents found at the RAM address held by the MAR ordata
which is to be transferred to that RAM address.

r v I _——

LMC FDE cycle

T e

1. Check the Program Counter (PC) for the address of the
next instruction in RAM

2. Fetch the instruction from that memory address.

3. Increment the Program Counter (add 1 to PC so that it
contains the RAM address number of the next instruction.)

4
d

Fetch

LMC FDE cycle

\

4. Split the instruction just fetched into opcode and operand
5. Store the opcode in the instruction register

6. Store the operand in the address register

4
]




LMC FDE cycle

i
— — 4\}

7. Execute the instruction based on the opcode given, using
the address register (operand) as necessary.
a. Load data from RAM if executing an LDA instruction, store data in
RAM if executing an STA instruction.
b. Storethe result of arithmetic or LDA operationsin the accumulator.
c. Ifthe instruction is a BRA, or a BRP/BRZ and the condition is met,
update the program counter with the contents of the address
register (operand).
8. If instruction is HLT (000) then stop, else return
to the Fetch phase. c

r > 1 _———

10/22/2024

& Maa CGowpulen

Assembly Language Code

cPU

[

ACCUMULATOR

[ASSEMBLE INTORAM] [RUN] [STEP
RESET| [LOAD| |HELP| |SELECT v

Assembly Language Code

cPU

e

= mmm mmmm m
T

mm mmmmmm

TAcOMUATOR mmmm mm m m
000

mmmmmmmmmm

5

mmm mmmmmm
mmmmmmmm

ASSEMBLE INTORAM] [RUN] [STEP]
[REsET| [LOAD| [HELP] [SELECT v

10



Assembly Language Code

00 |

ACCUMULATOR mmmmmm mmm
Ilmmmmmmmmmm
mm

10/22/2024

mmm

OPTIONS v

Assembly Language Code

< Man l:u.nuulau

cPU

[

ACCUMULATOR
000

Worked Example 1

Assembly

Let's assemble

and run this i"f(’
ou
rogram
prog 1t
Mnemonic | Machine A
code
INP 901 “
our 902 bmit | [ Cancel
HLT 000
[RUN| |[STEP!
LOAD HELP SELECT ~
-
r v ! r

11



Worked Example 1

Assembly Langu

age Code

1

It's now

assembled.

We can seeitin

RAM here.

Mnemonic Machine

code

INP 901
our 902
HLT 000

s g

|
\l e

t 901 [ 902 [ 000

10/22/2024

Demonstration

Assermbly Language Code

Mnemonic

Machine
code

INP

901

out

902

HLT

000

& Mo Gosmouise

Worked Example 2 -

Add 2 numbers

We only have one
accumulator and INP
always overwrites the
accumulator. So the
pseudocode is:

In LMC assembly
this would be...

input numl NP

store numl in RAM STA 99

input num2 NP

add numl from RAM ADD 99

output ouT

halt HLT C
j 4 n & 1}

12



Activity - o)
Programming with the LM

Now it's time for you to begin programming in
assembly language usingthe LMC.

Visit zigzaged ucation.co.uk/Imc

or peterhigginson.co.uk/Imc/

On Handout 3 complete Activities 1 and 2

You have 8 minutes!
£+ Run |
[Q Investigate |
i Modi'y [
@ Make [
r v i A

ANSWERS: Activity 1

Modify: Make:

INP INP

ouT STA 97

STA 9 INP

HLT STA 98
INP
STA 99
ouT
HLT

10/22/2024

ANSWERS: Activity 2

Modify: Make:

INP INP

STA 99 STA 99

INP INP

SUB 99 ADD 99

ouT STA 99
INP
SUB 99
ouT

13



"Variables" in the LMC (DAT)

* A label containing a DAT statement works as a
variable, it labels a memory address with atext
identifier.

one DAT 1
creates alabel called one for the next free memory
location and stores in it the value 1.

num DAT
creates label called num for the next free memory
location and does not overwrite its contents

4
L

10/22/2024

Branching in the LMC

« Branching uses labels and the branch commands to
alter the order in which the instructions are executed.

« Itachieves this by changing the program counter.

BRA Branch 10 the address spacified by the operand
BRZ Branch to the address specified by the operand If the value in the
accumulator is 0
BRP Branch to the address specified by the operand if the value in the
accumulator,is 0 or positive

« BRZ and BRP branch depending upon the value
currently stored in the accumulator and canbe used
as "if” conditions to allow selection between two
possible paths through the program. ':

r a 2 i ——

Branching and labels

« A label to the left of the instructionis converted to the
memory address of the instruction or data.

loop INP

loop is the label and when assembled, resolves to the
memory address wherethe instruction INP is stored.

« A label to theright of theinstructiontakes on the value of
the memory address labelled previously.

BRA loop

loop willresolve to the location we labelled earlier, so the
programwill loop back to the loop INP instruction

r v L _———

14



Branching to implement a loop

Predict what this LDA TEN
code does: START OUT

This block of code

will loop forever, and SUB ONE
the output will be: BRA START
10 ONE DAT 1

9 TEN DAT 10

8

etc... and it won't stop at 1 but continue throug

zero into the negative numbers!

10/22/2024

.4 n 4 [ A
Implementing a
condition-controlled loop
If we want to stop LDA TEN
this loop running
forever,we can START our
change BRA to BRP SUB ONE
(branch if positive or
zero). BRP START
Now what will it ONE DAT 1
output? TEN DAT 10
10,98, ..., 0.

C
| & n & i rF

Conditions otherthan ACC =0

What if we want to count
up from zero to nine? i.e.
implement this
pseudocode >

We can't directly compare

" until count == limit
the accumulator with 10.
We only have BRZ and
BRP to play with.
What can we do?
C
r a2 | A

0
10

count

limit

repeat
output count
count = count + 1

15



Subtract limit then
branch if zero LoA TEY
START ouT
Let's make a slight SUB ONE
change to our STA COUNT | Savecount
pseudocode: SUB LIMIT | subtract limit
BRZ END break out if 0
ct.)ur.xt =0 LDA COUNT-
limit = 10 RA START reload count
repeat —3 | .
output count END HLT oop bac
count = count + 1 ONE DAT 1
temp = count - limit
until temp = 0 TEN DAT 10
. COUNT DAT
Now we cancodethis: e par -
- a2 L A

Activity continued - (A veies)
Programming with the LMC
Using zigzageducation.co.uk/Imc or

eterhigginson.co.uk/Imc

OnHandout 3 complete Activities 3 and 4.
You have 10 minutes!

4
d

ANSWERS: Activity 3 & 4

Predict: Predict:
INP BEG INP
ADD FIVE ADD TEN
ouT ouT
FIVE DAT 5 BRA BEG
TEN DAT 10

Inputs a number, adds  |nputs a number, adds
five, outputs the result ten, outputs the result
then starts again. Runs
forever.
C

v ! F -

10/22/2024

16



10/22/2024

: Handout 3
ANSWERS: Activity 4
Modify: Make:
LOOP LDA START NP
ouT STA START
LOOP LDA START
SUB ONE
our
STA START SUB ONE
BRP LOOP STA START
HLT BRP LOOP
START DAT 5 HLT
ONE DAT 1 START DAT
ONE DAT 1 Cc

Branching to implement

selection
Consider this Let's rewrite as a
pseudocode: "subtract and

if a >= b then compare to zero"

a=a-b

output 1
else if a >>= 0 then

output 2 output 1
How can we use else
SUB and BRP to output 2
implement this?

C
4 v L ——

Branching to implement

selection
Let's implement this SUB B Notice that the
code fragment in
) BRP ABIGc elseand then
LMC assembly: branches have
a=a-b LDA B swapped over!
if a >= 0 then ouT
output 1 BRA END This is the
N simplest way
else ABIG LDA A to code
output 2 ouT if-then-else.
END HLT
C

4
]

17



Activity continued -
Programming with the LMC

Using zigzageducation.co.uk/Imc or

eterhigginson.co.uk/Imc

On Handout 3 complete Activity 5
and if time the Challenge activities 6 and 7.

You have 8 minutes!

Handout 3

4
L

10/22/2024

INP
ANSWER: STA NUM1
Activity 5 INE
STA NUM2
Write an LMC SUB NUM1
program that BRP SEC
outputs the larger
of two input values LpA NUM1
(using selection) ouT
HLT
SEC LDA NUM2
ouT
HLT
NUM1DAT
NUM2 DAT C
r v ! A

ANSWERS: Challenges

INP // input multiplicand
STA NUML // store as numl
Task 6 was INP // input multiplier
: STA NUM2 // store as num2
to mUItlply LOOP LDA TOTAL // load ruming total (0)
H ADD NUML // add multiplicand
twoin pUt STA TOTAL // store runging total
numbers: LDA NUM2 // load multiplier
SUB ONE // decrement by one
STA NUM2 // store multiplier
SUB ONE // we want to stop at 1 not 0
BRP LOOP // if miltiplier > 0 loop
LDA TOTAL // else load the total
ouT // output it
HLT // stop
NUML DAT
NUM2 DAT
ONE DAT 1
TOTAL  DAT 0
r v ! r

18



ANSWERS: Challenges

Task 7was to check if a number is divisible

by five...

INP // input a number

LOOP BRZ TRUE // number must be div by 5 so jump to "TRUE"
SUB FIVE // subtract 5
BRP LOOP // if still positive or zero, loop back
LDA ZERO // we've gone negative so not divisible by 5
ouT // output a zero
BRA END // jump to end

TRUE LDA ONE // this branch executes if we hit zero exactly
ouT // output a 1

END HLT // halt

ZERO DAT 0

ONE DAT 1

FIVE DAT 5
¥ v 1! A

10/22/2024

Isaac Computer Science

* Each A level topic covered in depth, specific to
each exam board.

 Multiple choice self-marking questions and
videos for each topic.

* Free downloadable workbook containing over
450 questions, covering all the A level
computer science topics, with space to write
and work out answers.

4
d

Practice Gameboard

19



Activity -
Isaac Gameboard

Now complete the Carm = o
gameboard on Isaac " P

Computer Science at
bit.ly/ialowlevel

Use the hints to help
you.

Assembly Language Isaac Student Booster
p

4
L

10/22/2024

Learning outcomes

By the end of this session you will be able to:

* Understand the purpose and characteristics of
high- and low-level languages

« Identify and explain the features of assembly
language

* Be able to interpret, complete and create
simple programs in Little Man Computer
Assembly language

4
d

Check for more ISAAC boosters

Qo wicccon wsos ()

Keep an
eye out
for more
student
booster
events

20



10/22/2024

Thank You

Isaac
) (STEM
LEARNING

A E Science

21



