[image: image1.jpg]ﬁome PAIR PROGRAMMING-1N-A-BOX
The Power of Collaborative Learning





Pair Programming Guidelines — Course Staff Handout 
[adapted from 26]
Many instructors assign duties for a course to teaching assistants, lab tutors, or both. This handout describes course staff responsibilities related to the pair programming aspects of a sample course. Modify these instructions to suit your circumstances.

Supporting pair programming in the introductory course

In CS1 students work with partners to complete programming work, using an approach called “Pair Programming.” In pair programming, one student in the pair “drives,” (types on the computer) while the other “navigates” (asks questions, makes suggestions, and points out errors). The partners switch roles every twenty minutes or so.

This guide describes the activities of course staff related to pair programming.

Teaching assistant and lab tutor roles
If you are a teaching assistant you are responsible for forming and recording the pairing of students, ensuring pairs follow the pair programming model, and assisting pairs with their work. You will monitor how pairs perform and deal with problems that arise. Activities marked “TA” below apply particularly to teaching assistants. But, as teaching assistants also perform the duties of lab tutors, all other parts of the document apply to you as well. 

If you are a lab tutor, your responsibilities are fewer. During lab sessions and while on duty outside of lab you answer partners’ questions about their programming work and the hardware and software used in lab. All sections not marked “TA” describe your duties. But, in order to better understand other teaching roles in the course, read the sections specified for teaching assistants, too.

All course staff members are advised to read Pair Programming in CS1—Sample Student Handout in order to become familiar with pair programming and how it is implemented in this course. Also, they should view the video mentioned in the handout to ensure they understand the process and “do’s and don’ts.” The handout is a handy, common reference for you and the students in the course. Address any questions to the instructor well ahead of the time you will first be in the lab. 

(TA) Help students find partners, record partnerships. There may be several steps to grouping all students into pairs:

» Give students several days to choose partners. Some will quickly find a suitable partner. Others may take longer, “interviewing” one or more students before they settle on a partner. 
» Help students who do not find a partner within several days. (Some students just find it hard to approach others, especially when they are new to computing courses or do not know anyone in the class.) One good approach is to gather together those students without partners and ask them to share their names, majors, year in school, roughly where they live (students living near each other can meet more easily), degree of previous programming experience, and any scheduling preferences. Encourage students to note which of their classmates seems like a likely partner. Once the introductions are complete, have students talk with others in the group whom they find potentially suitable. Several pairings should quickly result.
» If a student tries but cannot find a partner, you need to assign one. Try to pair the student with another who has roughly the same skill level and programming experience and, if possible, lives reasonably close to the student. 
» If there is one student remaining after pairs are formed, talk to colleagues or the instructor to see if students in other sections need a partner. If that fails, see if a pair in your section is willing to take on a third member. In a triad, two members navigate while one drives, and each takes turns as driver. Please make a team of three only if it cannot be avoided.

» If a student insists that she or he must work alone, tell the student to contact the instructor, whose permission is needed in order for a student to work singly. Pair programming is a course requirement so students cannot simply opt out.

» Record the student pairings, post a chart in the lab, and distribute the list to the instructor and other staff who may work with students.

Ensure students follow the pair programming model at all times. Pair programming means two students working as partners, with one person typing as the other watches and asks questions, makes comments, and helps to solve problems. They switch roles about every twenty minutes. While this way of working isn’t familiar, it is important to student learning. Students may be reluctant to switch roles at first. For example, member A may type faster than member B, and so B will allow A to type—or A will insist on continuing to type, thinking the work will get done faster this way. (It probably won’t, but the students do not have sufficient experience to know this.)

It’s critical to get students into the pair programming habit from the very beginning, as it is hard to get them to follow the model once they’ve been “doing it their way” for several weeks. In particular, be sure they switch roles. Every twenty minutes or so, call out “It’s time to switch,” and then make sure partners do so. 

Note that just “working together” in some informal way is not as beneficial as following the pair programming model with precision. 

Monitor students to be sure they continue to do pair programming. Politely but firmly guide students who have strayed from the model practices back to consistent pair programming. It helps to smile while being firm.

(TA) If there are problems with a pair, deal with the problems as soon as possible. If problems persist after your intervention, seek advice from the instructor.

Remind students to prepare for lab. They can do this by reading and thinking about the assignment beforehand. They should be ready to work when they sit down at the computer. Remind students that being unprepared puts an unfair burden on their partners and delays the team’s progress. Suggest pairs meet outside of lab to discuss and clarify the assignment before they begin to code it up.

(TA) Be available for private meetings with students. Tell students you are willing to meet with them individually to discuss any course-related matter. This signals to students that if they have a problem with their partner they can talk with you about it in confidence.

Be prepared to answer students’ questions. You have to be “up” on lecture material and the assignments in order to help students with the material. It is a good idea to work the programming assignments yourself. This may not be much fun, but it’s the only way you can get a feel for the difficulties and subtleties students will encounter.

Encourage students to ask questions—after the pair has tried to resolve them. Reassure students that difficulties are normal. Help foster a belief that they can complete the work and do well. Especially encourage students to ask their partners questions before coming to you; it often turns out that the partner will know the answer to a question, or the pair working together can quickly arrive at the answer. We want students to get used to relying first and foremost on each other.

Give students help, not answers. It is fine to tell people how to solve system-related problems, but you should lead them to their own solutions of problems related to the topics of the lab assignments. They should not become dependent on you; they should work with their partner, learn how to use manuals, read on-line documents and help files, and experiment. Ask them questions such as “What have you tried?”, “What have you done so far?”, “Where did things start going wrong?”, “What are the possible issues?” If the problem is with understanding the assignment, perhaps say, “Let’s read the assignment again and you tell me where it stops making sense.”

It will take you some time to learn these techniques, but it will be beneficial to you and the students you support in the future.

Be pleasant but ruthless about this. Students will beg you for a quick-fix answer, and it can seem easier for you to just give in than to point them towards finding the solution themselves. Nonetheless, resist the temptation, because students will come to expect you to fix their problems for them. 

Try to help all who need assistance. Spread yourself around to everyone rather than concentrating on just a few pairs. If many people want your attention at once, you’ll have to leave the current pair you are helping with a task to do independently while you make the rounds. Make sure each pair gets at least “first aid” help so they can get back to work; after that, feel free to spend more in-depth time with pairs that need it. 

Appear available. You should circulate around and help students, not simply sit in a corner and wait for them to call on you. Ask every pair on occasion if all is going well; such querying gives less assertive students an opportunity to ask questions.

Address the problems of very experienced students. A pair of experienced students often thinks it can wait until the last minute to complete assignments; this may be true for the first assignment or two, but significant work takes substantial time, even for people who understand the concepts. More advanced students may not have experience following rigid specifications imposed by someone else (recreational computer users can just change the requirements), but our students have to solve hard problems rather than work around them. Remind students that paying attention to and following specifications is critically important, both in this class and in the profession.

Don’t be too hard on yourself. Don’t feel bad if you can’t immediately identify a student’s problem. While most of us can see problems quickly for the early, simpler assignments, this may lead students to expect (unrealistically) that we’ll always be able to find and fix their problems at a glance. Of course, nobody can do that for complex assignments (such as the later ones in this class) and you need to explain this in lab and encourage students to think, experiment, use reasoning, and use each other to find and fix problems. It is okay to say you don’t know, as long as you let students know that together you can find resolve difficulty by seeking advice of the instructor.

(TA) Score pair programming evaluations and evaluate students’ performance as pair programming partners. Follow guidelines described in the course syllabus. If lab tutors are involved, encourage them to report to you about pairs they notice who are performing particularly well or poorly, giving a “heads up” about events you may not have noticed. Check out and confirm these observations for yourself before you include them in an evaluation of a student’s or pair’s performance. Do not rely on hearsay. 

Pair programming is worth the effort
Pair programming benefits everyone. Hold yourself and your students to the pair programming model and you will see gains in students’ learning and in their confidence as computer scientists.
NATIONAL CENTER FOR WOMEN & INFORMATION TECHNOLOGY | Pair Programming Guidelines – Course Staff Handout


[image: image1.jpg]