

starting

INVESTIGATIONS

For National Curriculum levels 1-3

SPECTRUM MATHS

Dave Kirkby
CollinsEducational

Acknowledgements

The author and publisher would like to thank Ann Nimmo, John Walker and Anne Woodman for their helpful comments on the Spectrum Maths material.

Published in 1991 by
Collins Educational An imprint of HarperCollinsPublishers
77-85 Fulham Palace Road
Hammersmith
London W6 8JB
First published in 1989 by Unwin Hyman Ltd.
Reprinted 1992, 1994, 1996, 1997
(C) Dave Kirkby 1989

The purchase of this copyright material confers the right on the purchasing institution to photocopy the pupils' pages without any specific authorisation by the publisher. No other part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher.

British Library Cataloguing in Publication Data
Kirkby, Dave
Spectrum mathematics.

1. Mathematics, for schools.
I. Title
I. Titic
510

ISBN 0003126935
Designed and illustrated by AMR, Basingstoke
Typeset by Microset Graphics Ltd, Basingstoke
Printed in Great Britain by Martins the Printers, Berwick on Tweed

Contents

	Title	Content	Apparatus	Paper
1	Odds and evens	Odds and evens	Dominoes	Special paper 3
2	Pairs	Addition	Number cards	
3	Dot tot	Addition	Dominoes	Special paper 3
4	Rockets	Shape/Colour patterns	Rectangles	Special paper 4
5	Snip a shape	Shape	Scrap paper/scissors	
6	Letters	Area		Squared
7	Coin count	Money/Addition	Coins	
8	Staircases	Number/Shape patterns	Cubes	Squared
9	Sticky stamps	Addition	Rectangles	
10	Trios	Addition	Number cards	
11	Make a mat	Shape patterns	Rectangles	Special paper 1
12	Keep your balance	Addition	Number balance	
13	Split the strip	Number patterns	Cubes	
14	Card tricks	Subtraction	Number cards	
15	Pick of the pence	Money/Addition	Coins	
16	Shapes from squares	Area		Squared
17	Totals	Addition	Number cards	
18	Square count	Area		Squared
19	Three coins	Money/Addition	Coins	
20	Buildings	Shape patterns	Cubes	Squared
21	Rectangles	Rectangles	Number rods	Squared
22	Strips	Colour patterns	Squares	Squared
23	Dice sort	Odds and evens	Dice	Squared
24	Trains	Addition	Number rods	Squared
25	Dice sums	Addition	Dice	Squared
26	Flags	Colour patterns		Special paper 5
27	Counter colours	Colour patterns	Counters	
28	Spot the domino	Number patterns	Counters	Special paper 3
29	Let's add	Addition	Number cards	
30	Domino dots	Addition	Dominoes	Special paper 3
31	Matching	Addition	Number rods	Squared
32	Caterpillars	Shape patterns	Hexagons	Special paper 2
33	Finding six	Addition	Number rods	
34	Towers	Colour patterns	Cubes	Squared
35	In the window	Addition		Special paper 6
36	Lines	Number patterns	Number rods	Squared
37	One, two	Shape patterns	Number rods	Squared
	Can you pay?	Money/Addition	Coins	
39	Spot the difference	Subtraction	Dice	Squared
40	Twos	Place value	Number cards	

Content Focus

Topic	Starting Investigations	More Investigations	Go Further With Investigations
Addition	$\begin{aligned} & 2,3,7,9,10,12,15,17,19, \\ & 24,25,29,30,31,33,35,38 \end{aligned}$	$\frac{2,11,21,25,32,36}{37}$	1, 17, 19, 28, 32
Subtraction	14,39	17	5,7
Multiplication		6, 7, 8, 12, 33	$\frac{4,12,13,24,29,36}{37}$
Division			9, 25, 40
Mixed number operations		29	16, 21, 33
Place value	40	1, 13, 16, 28	
Odds and evens	1,23		
Decimals			20
Number patterns	8, 13, 28, 36	8, 19, 21, 32, 36, 37	$\begin{aligned} & 3,8,13,17,24,29, \\ & 31,38,40 \end{aligned}$
Money	7, 15, 19, 38		
Colour patterns	4, 22, 26, 27, 34		
Shape patterns	4, 8, 11, 20, 32, 37	$\begin{aligned} & 5,9,18,20,22,23, \\ & 24,26,27,39,40 \end{aligned}$	$2,10,15,26,34,39$
Shape	5	15	
Triangles			11, 14, 35
Squares		4	31
Rectangles	21	30	
Polygons		3, 14, 35	6, 23, 30
Cubes			18
Symmetry		10	
Area	6, 16, 18	12,31,27	22, 27
Perimeter		12, 38	22.

Apparatus Focus

Apparatus	Starting Investigations	More Investigations	Go Further With Investigations
Calculators			4, 29, 33, 36
Calendars		37	17
Card			18
Circles			34
Coins	7,15,19,38		
Counters	27, 28	24	
Cubes	8, 13, 20, 34	34	38
Dice	23, 25, 39	2, 33	
Dominoes	1,3,30		
Geobards		4,31	6, 11, 23, 27
Hexagons	32		
Mirrors		10	
Number balance	12		
Number cards	2, 10, 14, 17, 29, 40	$1,7,11,13,16,17,25,28$	$1,5,12,16,20,21,25,32,36,37$
Number rods	21, 24, 31, 33, 36, 37	21	
Operation cards			16, 21, 25
Polygons			8
Rectangles	4, 9, 11	14	
Scissors	5		
Scrap paper	5		
Squares	22	3, 9. 26, 38, 40	3, 10, 22, 26, 30
Triangles		22	

Using the Teacher's Notes

CONTENT

This heading states the focus of the investigation in terms of a particular mathematical topic, e.g. Triangles, Addition, Number patterns.
A more detailed description of the potential content is outlined here on each of the teacher's pages.

Apparatus

This section indicates to the teacher what apparatus is likely to be required for the investigation, e.g. Cubes or Number cards. Where appropriate, the teacher is alerted to the availability, at the back of the book, of a 'special paper' which the pupils can use to record theit work.

| LEVEL UA N
 SSM HD
 $\mathbf{1}$

 2

 3

 4

 5

 $\mathbf{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| KEY UA Using and Applying Mathematics |
| N Number |
| HSM Shape, Space and Measures |
| Handling Data |

The teacher's notes for each investigation contain the above table. This table refers to the Programmes of Study and levels 1-6 of the National Curriculum. An attempt has been made to locate, by means of dots in the table, the approximate content level for each investigation, but it must be appreciated that many activities can be performed at a variety of different levels.

This symbol appears on every page and highlights the advice to teachers on recording.
This section contains the teaching notes but not necessarily the answers. The notes are intended as a guide to the possible directions the investigation may take. They contain background mathematics for the teacher, but should not be seen as an indication of what can be expected from all pupils. The pupils should feel free to follow their own lines of enquiry, which may very well not coincide with these notes.
This section may also include suggestions about recording, points for discussion, warnings, etcetera.

QUESTIONS

These suggested follow-up questions may lead to further investigations. They may also provide teachers with some ideas for potential areas for development. Many of the investigations are rich in opportunities for introducing a variety of mathematical ideas. Questions can help to link different ideas and concepts. Although the questions are written simply, teachers may need to adapt the phrasing and language to suit their pupils.

EXTENSIONS

It is hoped that pupils will develop sufficient interest and confidence to extend their work in their own way.

This section contains suggestions that teachers may wish to use with particular pupils, whilst encouraging them to develop their own ideas.

Using the Pupils' Sheets

You will need

The basic information about apparatus also appears on the pupils' sheets, so that the children have some idea of what materials they need.

The pupils' sheets are written using as few words as possible. However, pupils may still need some help in getting started.

Find or Investigate precedes an indication of where to start. Sometimes the indication is deliberately vague.

Encourage the pupils to become responsible for their own lines of enquiry, and to extend them in some way.

INTRODUCTION

Most schools use a mathematics scheme. Teachers using these require a range of support material to supplement the scheme. Such material is provided by Spectrum Maths.

This is a series of three books of investigations primarily for the primary years, although secondary school teachers with low attaining pupils will also find these books useful.

They are defined in terms of three ability levels. Broadly defined, these levels are:
Starting Investigations (Infants)
More Investigations (Lower Juniors)
Go Further With Investigations (Upper Juniors)
Each book contains:
40 pupil investigations in the form of photocopymasters.
Detailed teacher notes accompanying each investigation.
Special papers in the form of photocopymasters to aid pupils to record their work.

HOW CAN IT BE USED?

Spectrum Maths investigations can be used in a variety of ways:
(a) to consolidate other work in the school mathematics scheme
(b) as a completely separate supplement to the scheme
(c) as a means of introducing a new topic within the scheme
(d) to provide enrichment material at appropriate times.

The 40 pupil investigations in each book are non-sequential.
Investigations can be selected by the teacher to suit individual needs.
The teacher's notes contain clear indications of both the content area and the required apparatus for each investigation. This will aid the teacher who wishes to be selective. Some teachers may wish to select a group of investigations based on a particular mathematical theme e.g. multiplication. Others may choose investigations requiring the use of a particular piece of apparatus e.g. cubes.

The material is flexible in terms of organisation.
Some examples include:
Individual investigations: pupils working individually on their own particular investigation.
Small group investigations: the class divided into groups, each group working on a different investigation.
Class investigation: the whole class working on the same investigation. This may be the easiest form of organisation for teachers who are starting on this type of work.
School investigation: several classes working on the same investigation. This enables teachers to discuss and compare experiences amongst each other. It can also lead to combined work displays.

WHAT IS AN INVESTIGATION?

An investigation presents pupils with an open mathematical situation and invites them to explore it.

In most mathematical activities, a goal is specified and an answer is sought. There is no 'answer' to an investigation. It is the 'journey', not the 'destination' which is the goal.

The Spectrum investigations pupil material provides guidelines and suggestions of ways in which the pupil explorations may lead, and ideas for helping pupils continue their 'journey'.

As pupils become practised in making 'journeys' they will need to experience some of the following:

```
understanding the starting point
trying some examples
recording results (diagrams, tables, drawings, lists etc.)
devising methods of recording
spotting patterns
describing patterns
checking results
generalising results
systematically organising the 'journey'
devising strategies
writing an account of the 'journey'
extending the 'journey'
```

The 'journey' is often referred to as 'mathematical process' and lists like those above as 'process objectives'.

CALCULATORS

Spectrum Mathematics: Investigations does not contain many activities which focus on the use of a calculator. Nevertheless, pupils will often find a calculator a valuable aid, particularly when extending an investigation. The provision of calculators is left to the discretion of the teacher.

The activities which a calculator may be required are:
Starting Investigations 2, 7, 8, 10, 15, 17, 19, 25, 33, 35, 38.
More Investigations 2, 7, 11, 12, 17, 21, 25, 29, 32, 33, 37.
Go Further With Investigations $1,4,5,7,9,12,13,16,17,19,21,25,29,33,36,40$.

Odds and evens

ODDS AND EVENS

${ }^{\circ}$
Sorting dominoes into sets: both sides even numbers; both sides odd numbers; and one side an even number, the other an odd number.

Apparatus

Use a set of dominoes and start by removing those with a blank.
Domino paper (special paper 3).

LEVEL	UA	N	SSM	HD
1	0			
2	\bullet	0		
3	0	0		
4				
5				
6				

- Odds and evens.
- Number patterns.
- Recording observations.

The dominoes in each set are:
Both numbers odd Both numbers even

One odd and one even number

QUESTIONS

Which dominoes have 10 dots altogether, with both sides odd?Which dominoes have 8 dots altogether, with both sides even?Which dominoes have one side odd, one side even, and a difference of 3 ?

EXTENSIONS

Try sorting the dominoes according to the dot total.Try sorting them according to the dot difference.Try sorting them into pairs, doubles, trebles, and so on.

ADDITION

Addition bonds. Searching for different pairs of numbers with the same total.

Apparatus

Use cards numbered 1 to 20

LEVEL	UA	N	SSM	HD
1	\bullet			
2	\bullet	\ominus		
3	\bullet	\ominus		
4				
5				
6				

- Addition facts up to 20.
- Addition patterns.
- Recording observations.

On paper or in a book. Two possibilities are:
Total 12
or $\quad 1+11=12$
1, 11
$2+10=12$
2, 10

- .

There are five different pairs that total 12.
These can be arranged in order.

The number of possible pairs for other totals are:

Total	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Number of pairs	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9

QUESTIONS

EXTENSIONS

(?) What number is paired with 7 ?
Try different totals up to 20.
(?) How many pairs have both numbers odd/even?

Try to guess how many pairs you will find if the total is 16 .
? Which pair has the smallest difference?
Try with totals greater than 20.
Try with a different set of cards, e.g. 1 to 15 .

Pairs

Make pairs that total 12.
Here are two pairs:

Find some more.

Dot tot

ADDITION

Addition bonds based on the sum of the dots on dominoes.

Apparatus

A full set of 28 dominoes is required.
These can be made from card if necessary.
Domino paper (special paper 3).

LEVEL	UA	N	SSM	HD
1	0			
2	0	\ominus		
3	\bullet			
4				
5				
6				

- Addition bonds.
- Patterns in addition.
- Recording results.

\squareOn domino paper. The dominoes can be recorded using either dots or numbers.

There are four dominoes with a dot total of 6 .

The other totals are:
0

1

7

8

2

3

4

5

9

10

11

12

6 \square
\square
\square

3	3

QUESTIONS

Can you find three different dominoes with 5 dots each?What is the smallest/largest possible dot total?

EXTENSIONS

Try different totals.
Try to find out what dot total you will find most often.Try domino differences.

COLOUR PATTERNS

SHAPE PATTERNS

Different arrangements of three rectangles within a larger rectangle. Also, different arrangements according to colour.

Apparatus

You could use Logibloc rectangles or make 2×1 rectangles from coloured card.
Rocket paper (special paper 4).

LEVEL	UA	N	SSM	HD
1	\bullet			
2	\ominus		\ddots	
3	\bullet			
4				
5				
6				

Patterns using 2D shapes.

- Rectangles.
- Recording results.

There are six different rockets with this arrangement:

Y
B
R

B
R
Y

B
Y
R

There are six different rockets with this arrangement

and, as variations of the above, there are six like this.

QUESTIONS

?
How many different rockets can you make

(?)

How many different rockets have red next to blue, like this | R | B |
| :--- | :--- |

EXTENSIONS

Try with 2 red rectangles and 1 yellow rectangle.Try choosing from a collection of 3 red, 3 yellow and 3 blue rectangles. (You could choose 3 rectangles all the same colour.)

Try with a different rocket and rectangles of 2 colours.

SHAPE

Making different shapes by cutting out shapes from the folded edges of pieces of paper.

Apparatus

Rectangular pieces of paper, not too small. Scissors are also needed.

LEVEL	UA	N	SSM	HD
1	\ominus			
2	\ominus			
3	\bullet			
4				
5				
6				

Creating pictures and patterns in shape.

On paper or in a book. The cut-outs can be mounted on coloured paper and labelled.
Pupils can experiment with different cut-outs.
Some recognisable shapes arise from the following cuts.

Triangle

Kite

Rectangle

Diamond

Square

Hexagon

QUESTIONS

Can you make a square?

Can you make a circle?
(?)
Can you make an eight-sided shape?

EXTENSIONS

Try cuts using two straight lines only.

Try cuts using curved lines.
Try folding the paper twice and cutting through four sheets.

(C) HarperCollins Publishers Ltd. This page may be copied for use in the classroom (see page 2)

AREA

Designs of letters of the alphabet on squared paper. Measurement, in squares, of the areas of the letters.

Apparatus

The letters are drawn on squared paper.

LEVEL	UA	N	SSM	HD
1	\bullet			
2	\bullet		\bullet	
3	\bullet			
4			\bullet	
5				
6				

- Area by counting squares.
- Creating pictures using 2D shapes.

\squareOn squared paper (2 cm).

Pupils can start by drawing letters using whole squares only, egg.:

They might then progress to using half-squares as well, e.g.:

QUESTIONS

Can you draw an E that covers 10 squares (has an area of 10 square units)?
(?)
Can you draw different letters that cover the same number of squares (have the same area)?
(?)
Which letters have symmetry? (Discuss examples of letters with horizontal and vertical axes of symmetry, M-E- Pupils can fold their letters.)

EXTENSIONS

Try drawing Ts that cover different numbers of squares (with different areas).

Try drawing numbers instead of letters.

Try drawing pictures.

MONEY

ADDITION

Different ways of making given sums of money using $1 \mathrm{p}, 2 \mathrm{p}$, 5 p and 10 p coins.

Apparatus

Use $1 \mathrm{p}, 2 \mathrm{p}, 5 \mathrm{p}$ and 10 p coins.

LEVEL UA \mathbf{N} SSM HD $\mathbf{1}$ \bullet $\mathbf{2}$ \bullet \bullet $\mathbf{3}$ \bullet \bullet $\mathbf{4}$ $\mathbf{5}$ $\mathbf{6}$ 				
- Addition of money.				
- Patterns in addition.				
Recording results.				

On paper or in a book. Draw round coins, use sticky circles, or use rubber stamps.
There are 15 different ways of making 12 p.

QUESTIONS

How many ways can you find using 3 coins?

Can you find three ways without using coins?

EXTENSIONS

Try making other totals.Try finding six ways of making each total.
(?)
Can you find three ways without using $5 p$
coins?

Coin count

You will need these coins

Here are three ways of making 11 p.
 Staircases

NUMBER PATTERNS

SHAPE PATTERNS

Using cubes to build staircase models. Counting the number of steps and the number of cubes.

Apparatus

Interlocking cubes are ideal (e.g. Multilink).

LEVEL	IA	N	SSM	HD
1	\bullet			
2	0			
3	\bullet			
4				
5				
6				

- Number patterns.
- Patterns in shape.

On paper or in a book. Draw a table as suggested here. On squared paper. The staircases can be drawn side-on:
 cubes

QUESTIONS

EXTENSIONS

How many cubes for a 4-step staircase?Try double staircases.Try staircases like this.Try staircases like this.

? If you use six cubes, how many steps are there?

How many cubes for a 10 -step staircase?

This has 3 steps and uses 6 cubes.

Build some more staircases.

Sticky stomps

ADDITION

Finding different arrangements of $2 p$ and $3 p$ stamps, given an overall total cost of postage.

Apparatus

Paper or card rectangles can be used for the 'letters'.

LEVEL	UA	N	SSM	HD
1	\ominus			
2	\ominus			
3	\ominus			
4				
5				
6				

Addition of money.
Number patterns.

[1
On paper. The stamps can be drawn on paper or card rectangles to represent letters. The stamps can then be coloured. Pupils could also use sticky-paper squares, different colours for $2 p$ and $3 p$, and write $2 p$ and $3 p$ on them.

The possibilities are:

QUESTIONS

What stamps would you put on a letter that costs 11 p ?What is the greatest/least number of stamps needed for a letter that costs 18 p ?What is the price of five $2 p$ stamps and three 3p stamps?

EXTENSIONS

Try with letters for other costs.Try changing the prices of the two stamps.

Try with three different stamps.

Sticky stomps

You will need paper rectangles

In Toyland, only 2p and 3p stamps can be used.
A letter costs 8 p to send.
These envelopes show different ways to stick the stamps.

Find different ways to stick the stamps if a letter costs 9p.

ADDITION

Finding sets of three different numbers which, when added, total 12.

Apparatus

Numbercards can be used if required.

LEVEL	UA	N	SSM	HD
1	\bullet			
2	\bullet	\bullet		
3	\bullet			
4		\bullet		
5				
6				

- Summing three single-digit numbers.
- Recording results.

On paper or in a book. Two possibilities are:

Total 12	or	
$1,2,9$	$1+2+9=12$	
$1,3,8$	$1+3+8=12$	
.	.	.
.	.	.

The possible different trios are:

1	2	9	2	3	7
1	3	8	2	4	6
1	4	7			
1	5	6			

$3 \quad 4 \quad 5$

If repetitions are allowed, the other possible trios are:

1	1	10	3	3	6
2	2	8	4	4	4

QUESTIONS

EXTENSIONS

How many trios can you find using a 2 ?
(?) Which trio has numbers in counting order (consecutive)?

Try allowing numbers to be repeated.

Try with four numbers, two numbers, and so on.

Try with \qquad $+$ \square \square $=12$.

Trios

Add three numbers to make 12.
The three numbers must be different.

Find some more.

SHAPE PATTERNS

Different patterns formed by arranging five 2×1 rectangles inside a larger (2×5) rectangle.

Apparatus

Use Logibloc rectangles or make 2×1 rectangles from card. Mat paper (special paper 1).

LEVEL	UA	N	SSM	HD
1	\ominus		\ominus	
2	\bullet	\bullet	0	
3	\bullet			
4				
5				
6				

- Appreciate spatial properties through moving shapes around.
- Everyday shapes - rectangles.
- Classifying and recording.
 On mat paper. The arrangements can then be outlined and coloured.

The different arrangements are:

5 'uprights’

3 'uprights', 2 'flats'

These assume that, for example,

QUESTIONS

Which pattern has most 'upright' mats?
(Explain upright in this context.)
(?)
Can you make a pattern with three 'flat' mats? (Explain flat in this context.)
(?) Which patterns look exactly the same upside down?

EXTENSIONS

Try fitting 6 mats into a 2×6 rectangle.

Try fitting 8 mats into a 4×4 square.
Try making patterns using mats in two separate colours.

ADDITION

Exploration of different possible positions of 3 weights on a number balance.
Addition bonds for numbers up to 10 .

Apparatus

Use a number balance and weights.

LEVEL	UA	N	SSM	HD
1	\bullet			
2	\ominus	\bullet		
3				
4				
5				
6				

- Addition facts.
- Patterns in addition.
- Recording results.
\square
On paper or in a book. Two possibilities are:

Balance 7
 1 and 6

or
2 and 5

$$
\begin{aligned}
& 1+6=7 \\
& 2+5=7
\end{aligned}
$$

One systematic approach is to place one weight on $2,3,4,5, \ldots$ in turn on one side of the balance, and then find different positions for the other weights on the other side.

These are the different possibilities:

2	$(1,1)$				
3	$(1,2)$				
4	$(1,3)$	$(2,2)$			
5	$(1,4)$	$(2,3)$			
6	$(1,5)$	$(2,4)$	$(3,3)$		
7	$(1,6)$	$(2,5)$	$(3,4)$		
8	$(1,7)$	$(2,6)$	$(3,5)$	$(4,4)$	
9	$(1,8)$	$(2,7)$	$(3,6)$	$(4,5)$	
10	$(1,9)$	$(2,8)$	$(3,7)$	$(4,6)$	$(5,5)$

QUESTIONS

EXTENSIONS

How many ways are there of balancing a 6 on one side?

If one weight is on 7 and another on 2 , where will the third weight have to be? (Two possible answers.)
? If one weight is on 6 , where could the others be? (Seven possible answers.)

You will need
a number balance weights

Balance 3 weights.

Write down the numbers.

$3+2=5$

Find other ways of balancing 3 weights.

Split the strip

NUMBER PATTERNS

Investigating different ways of splitting a given number into three smaller numbers.

Apparatus

Interlocking cubes are ideal (e.g. Multilink).

LEVEL UA N SSM HD $\mathbf{1}$ \bullet \bullet 2 \bullet \bullet 3 \bullet 4 5 6 				
- Addition using objects.				
- Addition facts.				
- Paterns in adition.				
Sorting and recording.				

On paper or in a book. $\quad 1+1+6=8$
$1+2+5=8$

The strip of 8 cubes can be split in the following different ways:

$(1,3,4)$

$(2,2,4)$

$(2,3,3)$

QUESTIONS

How many different ways can you find?(?) How many ways have two parts the same, for example, $(2,2,4)$?
(?) If a split has three parts $(3,4,7)$, how many cubes were in the strip to start with?

EXTENSIONS

Try with strips of different number of cubes.

Try splitting strips in two.Try splitting strips in four.

SUBTRACTION

Subtraction bonds involving the numbers 1 to 6 .

Apparatus

Use cards numbered 1 to 6 .

LEVEL	UA	N	SSM	HD
1	\ominus	0		
2	\ominus	0		
3				
4				
5				
6				

- Subtraction with numbers up to 10 .
- Number patterns.
- Recording results.

On paper or in a book.
$4-3=1$
$5-3=2$

A systematic approach could start by 'fixing' the 6 and finding all the solutions to $\square-\square=\square$; then 'fixing' 5 , and so on.
Altogether there are 12 ways of placing the cards:

QUESTIONS

EXTENSIONS

(?)
Can you find two ways of using $4 \sqrt{3}$ and 1?
Θ Try using cards numbered 1 to 9 .
?
How many different ways can you find using 5 ?
(?) How many different ways give the answer
\square
(?) Which card have you used most often?

Cord tricks

You will need cards 1 to 6
$\square-\square=$

2

\qquad

Place cards to show
(8-2)=4

Now show

$$
4-3=1
$$

MONEY

ADDITION

Making given amounts of money using different numbers of coins from a bank of $5 \mathrm{p}, 10 \mathrm{p}$ and 20 p coins.

Apparatus

Use $5 \mathrm{p}, 10 \mathrm{p}$ and 20 p coins.

LEVEL	UA	N	SSM	HD
1	\bullet			
2	\bullet	\bullet		
3	\bullet			
4				
5				
6				

- Addition of money.
- Patterns in addition.
- Recording results.

On paper or in a book. Draw round coins, use sticky circles, or use rubber stamps.
Here are some ways of making 30 p with different numbers of coins:

QUESTIONS

What amounts can be made with one coin?

Can you find two different ways of making 30 p with three coins?How can you make 50 p with four coins?

EXTENSIONS

Try to make different amounts of money.Try with different coins, e.g. 2p, 5p, 10 p .

Try using no more than two of each coin.

Make 25p with different numbers of coins.

2 coins

3 coins

4 coins

5 coins

Make 30p with different numbers of coins.

16 Shapes from squares

AREA

Drawing different shapes on squared paper, using given numbers of squares per shape.

Apparatus

Squared paper.

LEVEL	UA	N	SSM	HD
1	\bullet	\bullet	\bullet	
2	\bullet	\bullet	\bullet	
3	\bullet			
4			\bullet	
5				
6				
Counting.Area by counting squares.Drawing 2D shapes.Recognition of squares, rectangles.Recording results.				

On squared paper. The shapes can be coloured, cut out and then stuck on a backing sheet. For example, one sheet for all the different 5 -square shapes, one for all the 8 -square shapes, and so on.
One way of doing this is to draw the shape for, say, 6 squares and then add one square. Thus the children could build up series of shapes, for example:

7 squares

8 squares

9 squares

QUESTIONS

Which shape is the smallest/largest?

What is the distance around each shape?Is the distance around the 4 -square shapes the same?

EXTENSIONS

Try drawing different shapes all made from 6 squares.Try drawing shapes with holes, like this.

Shapes from squares

Draw some shapes on squared paper. Here are two made from 4 squares each.

Here are two made from 5 squares each.

ADDITION

Addition of a single-digit number to a two-digit number. Possible totals for different arrangements of three digits.

Apparatus

Use cards numbered 1 to 9 and select three with which to find the different arrangements.

LEVEL	UA	N	SSM	HD
1	\ominus			
2	\bullet	0		
3	\bullet	\bullet		
4		0		
5				
6				

- Ordering numbers.
- Addition of single and two-digit numbers.
- Odds and evens.
- Recording results.

On paper or in a book. Write sums as suggested here.
There are three different possible totals, each of which can be obtained in two ways.

24	
$+\quad 5$	
29	25 $+\quad 4$ 29 $+\quad 5$ 47 52 $+\quad 4$ 56
45	
54	

QUESTIONS

EXTENSIONS

What is the smallest/largest possible total?
(?) Which total is nearest to 40 ?, to 35 ?
? Which totals are odd/even?

Try with a different set of 3 cards.Try choosing three cards from a set of four.

Try a different arrangement, for example:

Square count

AREA

On squared paper, drawing different shapes made up from squares and half-squares.

Apparatus

Squared paper.

LEVEL	UA	N	SSM	HD
1	-	\bigcirc	-	
2	\bigcirc		-	
3	-			
4			\bigcirc	
5				
6				

- Counting.
- Area by counting squares.
- Drawing 2D shapes.
- Recognition of squares, triangles.

On squared paper. Pupils could colour the whole squares in one colour and the half-squares in another.

These shapes are made from half-squares only:

1 half-square 2 half-squares

4 half-squares

6 half-squares

These shapes are made from half-squares and whole squares:

QUESTIONS

What is the total number of squares in each shape?
(e.g.: 1 square +6 half-squares $=4$ squares)

Which shape is the smallest/largest?

EXTENSIONS

Try drawing different shapes with 4 half-squares, 5 half-squares, and so on.Try drawing different squares and rectangles.

Square count

You will need squared paper

Draw some squares

and some half-squares.

Now draw some shapes like these.

1 square and 2 half-squares

Draw some more shapes.
Count the squares and half-squares in each shape.

MONEY

ADDITION

Investigating the different amounts that can be made with just three coins chosen from sets of $1 p, 2 p, 5 p$ and $10 p$ coins.

Apparatus

Use $1 \mathrm{p}, 2 \mathrm{p}, 5 \mathrm{p}$ and 10 p coins.

LEVEL	UA	N	SSM	HD
1	\ominus			
2	\ominus	\bullet		
3	\ominus			
4				
5				
6				

- Addition of money.
- Recording results.

On paper or in a book. Draw round coins, use sticky circles, or use rubber stamps. Alternatively, pupils can write: $14 p=10 p+2 p+2 p$.

The different possible amounts, up to 30 p, are:

1 p	11 p	$(5,5,1)$	21 p	$(10,10,1)$
2 p	12 p	$(5,5,2)$	22 p	$(10,10,2)$
3 p	$(1,1,1)$	13 p	$(10,2,1)$	23 p
4 p	$(1,1,2)$	14 p	$(10,2,2)$	24 p
5 p	$(1,2,2)$	15 p	$(5,5,5)$	25 p
6 p	$(2,2,2)$	16 p	$(10,5,10,5)$	26 p
7 p	$(5,1,1)$	17 p	$(10,5,2)$	27 p
8 p	$(5,2,1)$	18 p		
9 p	$(5,2,2)$	19 p		28 p
10 p		20 p	$(10,5,5)$	30 p
			$(10,10,10)$	

Some amounts can be made in more than one way, for example $12 \mathrm{p}:(5,5,2)$ or $(10,1,1)$.

QUESTIONS

What is the smallest/largest amount possible?What amounts cannot be made?
What amounts can be made with 3 coins of the same value?
(?)
What amounts can be made if 10 p coins are not allowed?

EXTENSIONS

Try using one 20 p coin as well as the other coins.Try choosing 4 coins.

SHAPEPATTERNS

Different arrangements of six cubes joined face to face.

Apparatus

A large collection of interlocking cubes is needed.

LEVEL	UA	N	SSM	HD
1	\bullet		\bullet	
2	\bullet		\bullet	
3	\bullet			
4				
5				
6				

Building 3D shapes. Moving shapes around.

- Recognition of cubes and other shapes.

It is not really appropriate to record these, though it is possible to show these models side-on using squared paper:

Many different buildings can be made with six cubes. These examples are all one unit in width. They can be built systematically - first those that are 6 cubes high; then those that are 5 cubes high; then 4 cubes high, and so on.

QUESTIONS

EXTENSIONS

How many cubes high is each of your buildings??
How many different buildings can you make with a height of 4 cubes?
(?) Can you make buildings with just one flat roof?

Try with a different number of cubes.

Try counting the total number of squares on the top and four sides of each building (surface area, less base, in squares).

Buildings

You will need
6 cubes

Make buildings.

Make some more buildings.

© HarperCollins Publishers Ltd. This page may be copied for use in the classroom (see page 2)

RECTANGLES

The construction of rectangles of different sizes using sets of number rods of the same length.

Apparatus

Use squared paper to draw the rectangles. A set of number rods is needed.

LEVEL	UA	N	SSM	HD
1	\ominus		\ominus	
2	\ominus		0	
3	\ominus			
4				
5				
6				

- Number patterns.
- Appreciate spatial properties through moving shapes around.
- Recognition of rectangles.

Recording results.

\square On squared paper (1 cm).

The different rectangles will have dimensions that are multiples of 3 ; for example,

3×4

3×5

3×6

The activity will highlight the equivalence of 3×5 and 5×3 rectangles; for example,

5×3

3×5

Some rectangles can be built in different ways:

QUESTIONS

EXTENSIONS

Can you make a square? How many rods do you need? How many squares are there on each side?

How many different rectangles can you build with four 3 -rods?Try finding all the different ways of arranging five 3 -rods to make a 3×5 rectangle.

Try with 4-rods.

Try with two sets of rods, for example, 3 -rods and 4 -rods.

Rectangles

You will need

3-rods

 squared paperFill rectangles.

Draw some different rectangles and try to fill them.

COLOUR PATTERNS

Arrangements of four squares of two and three different colours.

Apparatus

Provide the children with Logiblocs or squares of coloured card.
Squared paper.

LEVEL	UA	N	SSM	HD
1	\ominus			
2	\bullet			
3	0			
4				
5				
6				

- Patterns using 2D shapes. - Recording results.

On squared paper. The strips can be coloured.
There are six different arrangements:

If three white and one red square are used, there are only four different arrangments:

QUESTIONS

Are \square and \square the same?

EXTENSIONS

Try strips with five squares, two white and three red.Try two red and two white squares in various patterns to make a larger square.Try strips with four squares, two white, one red and one blue.

ODDS AND EVENS

Different combinations of the numbers on three dice: all numbers odd; all even; or mixtures of odd and even.

Apparatus

Use three ordinary dice or three cubes numbered 1 to 6 .

LEVEL	UA	N	SSM	HD
1	\ominus			
2	\ominus	\bullet		
3	\bullet			
4				
5				
6				

- Odds and evens.
- Recording results.

$.{ }^{\circ} \cdot{ }^{\circ} \cdot=?$

There are ten different 'all odd' combinations:

Some discussion will be needed about, for example, $1,5 \pi 5$ and $3,5 \square 1$.

QUESTIONS

What is the total of each set of three numbers?

One dice shows 3 , one shows 1 , and the three numbers add up to 9 . What number does the other dice show?

Can you make a total of 10 with two 'odd' dice and one 'even' dice?

EXTENSIONS

Try showing even numbers only.Try showing one odd and two even numbers.Try using spinners, numbered 1 to 10.

Trains

ADDITION

Combinations of different multiples of two numbers to make different totals.

Apparatus

Use Cuisenaire or Colour Factor number rods.
Squared paper.

LEVEL	UA	N	SSM	HD
$\mathbf{1}$	\bullet			
2	\bullet	\bullet		
3	\bullet	\bullet		
4		\bullet		
5				
$\mathbf{6}$				

- Addition facts.
P Patterns in addition.
- Multiplication patterns.
Recording results.

\square
On paper. Draw around the rods or, more easily, on squared paper. The rods can then be coloured.

Pupils can be systematic by starting with 2 as a total, and then trying to make 3 , then 4 , and so on.

Make sure the children understand that these are the same:

Note that some totals can be made in different ways, e.g.:

12 \square

QUESTIONS

EXTENSIONS

Can you make a train for every number up to 12 ?
(?) Can you make different trains for some of the numbers?Try with three different sets of number rods.

ADDITION

Sums of the dots on the top faces of two thrown dice.

Apparatus

Use two dice numbered 1 to 6 .

LEVEL	UA	N	SSM	HD
1	\ominus			
2	\ominus	\ominus		
3	\bullet			
4				
5				
6				

- Addition facts.
- Patterns in addition. - Recording results.

On paper or in a book: Total 8
On squared paper: Total 8
or

There are three different ways of obtaining a total of 7 :

All totals between 2 and 12 are possible:

QUESTIONS

How many different ways can you make a total of 9 ?What totals can you make when both dice show the same?

How many different totals can you make?

EXTENSIONS

Try making totals with three dice.
Try with different dice, e.g. with 1 , $3,5,7,8,9$ and $2,4,5,6,7,9$ written on blank faces. (Make sure that $\underline{9}$ and $\underline{6}$ cannot be confused.)

Dice sums

You will need 2 dice

These throws have a total of 5 .

$$
3+2=5
$$

Find throws with a total of 7.

COLOUR PATTERNS

Making different 2 -colour patterns by colouring the squares of 2 by 2 flag shapes.

Apparatus

The flag paper (special paper 5) provides the flag shapes. Alternatively, squared paper can be used.

LEVEL	UA	N	SSM	HD
$\mathbf{1}$	\bullet			
2	\bullet	\bullet	\bullet	
3	\bullet			
4				
5				
6				

- Patterns using 2D shapes.
- Choose classification criteria.

On flag paper. The flags can be coloured.
It is important to encourage a systematic approach. For example, the children could start by finding different flags with one yellow square, then flags with two yellow squares, and so on.

QUESTIONS

EXTENSIONS

How many different flags have 1 yellow square?Which flags will look the same upside down?
Try different flags, e.g.

Try three colours.'Try designing flags with triangles.

COLOUR PATTERNS

Arrangements of three different coloured counters in a vertical strip.

Apparatus

Red, orange and green counters.

LEVEL	UA	N	SSM	HD
1	\ominus			
2		\ominus		
3	\ominus			
4				
5				
6				

- Patterns using 2D shapes.
- Recording results.

On paper or in a book. Draw round coins or use sticky circles. Alternatively, draw them free-hand.

There are six different arrangements using one counter of each colour:

QUESTIONS

EXTENSIONS

How many different arrangements have red at the top?

What is the correct arrangement for traffic lights?

Try four colours in a strip like this:

Counter colours

You will need
one red, one orange and one green counter

Put one counter on each circle.

Here are two ways:

How many different ways
can you find?

Spot the domino

NUMBER PATTERNS

Different arrangements of up to six counters used as the spots on dominoes.

Apparatus

Use up to six counters intitially, then increase the number up to twelve.
Domino paper (special paper 3).

LEVEL	UA	N	SSM	HD
1	\ominus			
2	\ominus	0		
3	\bullet			
4				
5				
6				

- Addition patterns.
- Recording results.
- Choose sorting criteria.

On domino paper. The dominoes can be recorded using either dots or numbers.
The different dominoes are:

QUESTIONS

EXTENSIONS

How many different dominoes can you make with 4 counters?

Try allowing one extra counter.

Try using up to ten counters.
? How many dominoes have a blank?
? Which dominoes have one side with two counters more than the other side?

You will need up to 6 counters domino paper

Make dominoes with the counters.

\square
Here are two dominoes:

Make some more dominoes.

ADDITION

Addition bonds in the form of vertical sums, using the numbers 2 to 8 .

Apparatus

Use cards numbered 2 to 8 initially, and then include 1 and 9 if appropriate.

LEVEL	UA	N	SSM	HD
1	0			
2		\ddots		
3				
4				
5				
6				

- Addition facts up to 10 .
- Addition patterns.
- Recording results.

\square
On paper or in a book.

There are twelve different possible additions:

QUESTIONS

EXTENSIONS

How many different addition sums can you make using 6 ?
? How many different ways can you find the total 7 ?

What is the highest/lowest total you can find?Try introducing the card numbered 1.Try using cards numbered 1 to 9.

Try subtracting instead of adding.

ADDITION

Finding different pairs of dominoes with a fixed overall dot total.

Apparatus

A full set of 28 dominoes is required. These can be made from card if necessary.
Domino paper (special paper 3).

LEVEL	UA	N	SSM	HD
1	0			
2	\ominus	\bullet		
3	\bullet			
4				
5				
6				

- Addition facts.
- Addition patterns.
- Recording results.

$\square /$On domino paper. The dominoes can be recorded using either dots or numbers.

To make a total of 7 dots, the pairs must be 0 and 7 dots, 1 and 6 dots, 2 and 5 dots, or 3 and 4 dots.

0 and 7

1 and 6

2 and 5

2 and 5

3 and 4

QUESTIONS

How many pairs have a 'double'?

EXTENSIONS

Try other dot totals.
(?) Which pairs have a dot difference of 3 ?

Try dot differences.
(?) What dot differences can you find if the dot

Try removing the blanks.
(?) What is the highest/lowest possible dot total?

ADDITION

Partitioning of a number in all possible ways.

Apparatus

Use number rods to make the different matches. Squared paper.

LEVEL	UA	N	SSM	HD
1	\bullet			
2		0		
3	\bullet			
4				
5				
6				

- Addition of two-digit numbers.
- Number patterns.
- Recording results.

$\square / 0$
On squared paper. The rods can be outlined and then coloured.
The other 4-rod matches are:

1	1	2	
1	2		1
1	1	1	1

There are 15 different ways to match the 5 -rod.

Note that the total number of matches for a 4-rod is 8 , and the total number of matches for a 5 -rod is 16 .

QUESTIONS

EXTENSIONS

How many different ways are there of matching the 4 -rod?

Which matches are the same, but back to front?

How many matches do not use a 1 -rod?

Matching

You will need one 4-rod other number rods squared paper

Match it with other rods.

Find some more ways of matching.
Try matching a 5-rod.

SHAPE PATTERNS

Making different shapes by joining four regular hexagons edge to edge.

Apparatus

Use regular hexagons cut from card, or hexagonal Logiblocs. Hexagon paper (special paper 2).

LEVEL	UA	N	SSM	HD
1	\bullet			
2	\bullet	\bullet		
3				
4				
5				
6				

- Patterns using 2D shapes.
- Rotations and reflections.
- Recording results.

On hexagon paper. The caterpillars can be coloured differently.
There are seven different possible caterpillars:

Pupils can cut out the shapes. The seven different caterpillars can be joined to make shapes, e.g.:

QUESTIONS

EXTENSIONS

?
Which caterpillar takes up most/least room on the paper?
? How many joins are there in each caterpillar?
e.g. 4 joins
Try with 3 or 5 hexagons.

Try joining shapes other than hexagons, e.g. squares, triangles.Try making different arrangements of hexagons of two separate colours in the same caterpillar shape.
 Here are two caterpillars:

Join the hexagons to make some more caterpillars.

Finding six

ADDITION

Different ways of expressing a given number in terms of whole numbers and addition signs.

Apparatus

Provide number rods if necessary.

LEVEL	UA	N	SSM	HD
1	\bullet			
2	\bullet	\bullet		
3	\bullet			
4				
5				
6				

Addition facts.

- Addition patterns.

On paper or in a book. $6=1+1+4$.
Valuable discussion can arise from considering:
$6=1+2+3$ and $6=3+2+1$
Are they the same?
To work systematically start by adding two numbers, then three numbers, then four, and so on. Number rods can be used to illustrate each sum.

$6=1+5$	$6=1+1+1+3$
$6=2+4$	
$6=3+3$	$6=1+1+2+2$
$6=1+1+4$	
$6=1+2+3$	
$6=2+2+2$	$6=1+1+1+1+2$

QUESTIONS

What is the greatest number of signs that can be used?

How many different ways use three signs?
(?) How many different ways can a 4 be used?

EXTENSIONS

Try for different target numbers.Try allowing each number (apart from the target number) to be used up to three times, but not more.Try introducing subtraction signs.
Finding six

Use whole numbers: 1, 2, 3, and so on, and addition signs:,,$+++\ldots$

Here are some ways of writing 5 .
our neper y.

Find ways of writing 6.

Towers

COLOUR PATTERNS

Using cubes of two separate colours to build different towers each 3 cubes high.

Apparatus

Use interlocking cubes such as Multilink. Squared paper.

LEVEL	UA	N	SSM	HD
1	\ominus		\ominus	
2	\ominus		\ominus	
3	\ominus			
4				
5				
6				

- Building 3D shapes.
- Patterns based on cubes.
- Recording results.

On squared paper. Draw strips and colour them.
There are eight different possible towers.

QUESTIONS

EXTENSIONS

How many different towers can you make?Try towers of height 4 cubes.
How many different towers have 1 red and 2Try using cubes of three separate colours.Find two towers that would be identical if one was turned upside down.

© HarperCollins Publishers Ltd. This page may be copied for use in the classroom (see page 2)

ADDITION

Addition bonds for numbers up to 18 . Sums of pairs of adjacent numbers on a 4 by 4 square.

Apparatus

Use the window paper (special paper 6). If possible, stick the outline windows onto thin card.

LEVEL	UA	N	SSM	HD
1	\bullet			
2	\bullet	\bullet		
3	\bullet	\bullet		
4				
5				
6				

- Addition facts up to 10 .
- Addition facts up to 20 .
- Recording results.

On paper or in a book. $5+9=14$
Encourage a systematic approach. For example, consider horizontal pairs first and start at the top left.

There are 12 different horizontal pairs:

Pair	Total	Pair		Total	Pair		Total
59	14	9	2	11	2	6	8
15	6		4	9	4	1	5
82	10		0	2	0	4	4
63	9	3	7	10	7	3	10

There are 12 different vertical pairs:

Pair	Total	Pair	Total	Pair	Total	Pair	Total
5	6	9	14	2	6	6	7
1		5		4		1	
1	9	5	7	4	4	1	5
8		2		0		4	
8	14	2	5	0	7	4	7
6		3		7		3	7

The following totals are possible: $2,4,5,6,7,8,9,10,11,14$.

QUESTIONS

? Is it possible to find a total of 14 ?
? What totals are not possible?
? How many different windows give a total of 9?

EXTENSIONS

Try with different arrangement of numbers.

Try with a different shaped window,
e.g.

Try finding differences instead of sums.

In the window

You will need
window paper

5	9	2	6
8	5	4	1
6	2	0	4
6	7	3	

Cut a hole in card to make a window large enough to show two squares only.

You can find totals like this:

Total 11

Total 7

Find some more totals.

Lines

NUMBER PATTERNS

Different arrangements of three number rods in a line. Conservation of number. Conservation of length.

Apparatus

Use 2-rods, 3 -rods and 4-rods from either Cuisenaire or Colour Factor.
Squared paper.

LEVEL	UA	\mathbf{N}	SSM	HD
1	\bullet			
2	\bullet	\bullet		
3	\bullet		\ominus	
4				
5				
6				

- Addition facts.
- Number patterns.
- Sorting shapes in different ways.
- Recording results.

On squared paper. The rods can be outlined and then coloured.
There are six different ways of making a line:

Note that 4, 3, 2 and 2,3,4 are defined as different ways. The arrangements can be coloured according to the colours of the rods.

QUESTIONS

EXTENSIONS

What is the total of the three rods?

How many different lines have the 2-rod in the middle?

How many have the 3-rod in the middle?

SHAPE PATTERNS

Making different shapes using 1-rods and 2-rods.

Apparatus

Use rods from Cuisenaire or Colour Factor.
Alternatively make a unit square and two 2×1 rectangles from card.
Squared paper.

LEVEL	UA	N	SSM	HD
1	\bullet			
2	\bullet	\bullet		
3	\bullet			
4				
5				
6				

- Arranging shapes in different ways. - Recording results.

[1]On squared paper. The shapes can be drawn on squared paper and then coloured. For example, the 2 -rods can be in one colour and the 1 -rod in another.
These notes assume that the shapes are flat (two dimensional).
A systematic approach is to first consider shapes made from just 2 rods.
These include:

Then, taking each shape in turn, the third rod can be fitted in every possible position:
and so on.

Also, there are different arrangements which make the same shape, for example:

and

Some arrangements make letters of the alphabet.

QUESTIONS

Which shape takes most/least room on the paper?

How many different L shapes can you make?
(?) Can you make other letters of the alphabet, e.g. Z, W, V, H?

EXTENSIONS

Try finding different ways of making the same shape.

Try not letting the 2-rods touch each other, e.g.:

Try with two 1 -rods and two 2-rods.

Try with one 1-rod, one 2-rod and one 3 -rod.

One, two

You will need one 1-rod and two 2-rods squared paper

Join them to make shapes.

Find some more shapes like this.

Can you pay

MONEY

ADDITION

Investigating how many different sums of money can be made when selecting from 4 coins - one each of $1 p, 2 p, 5 p$, and $10 p$ coins.

LEVEL UA N SSM HD $\mathbf{1}$ \bullet 2 \ominus						
3						
4						
5						
6						Addition of money.
:---						
Patterns in addition.						
Recording results.						

Apparatus

Use $1 \mathrm{p}, 2 \mathrm{p}, 5 \mathrm{p}$ and 10 p coins.

On paper or in a book. Draw round coins, use sticky circles, or use rubber stamps. Alternatively, write $13 p=10 p+2 p+1 p$.

The different amounts possible are:

1 p	$: 1 \mathrm{p}$	11 p	$: 10 \mathrm{p}, 1 \mathrm{p}$
2 p	$: 2 \mathrm{p}$	12 p	$: 10 \mathrm{p}, 2 \mathrm{p}$
3 p	$: 1 \mathrm{p}, 2 \mathrm{p}$	13 p	$: 10 \mathrm{p}, 2 \mathrm{p}, 1 \mathrm{p}$
4 p	$:$ Not possible	14 p	$:$ Not possible
5 p	$: 5 \mathrm{p}$	15 p	$: 10 \mathrm{p}, 5 \mathrm{p}$
6 p	$: 5 \mathrm{p}, 1 \mathrm{p}$	16 p	$: 10 \mathrm{p}, 5 \mathrm{p}, 1 \mathrm{p}$
7 p	$: 5 \mathrm{p}, 2 \mathrm{p}$	17 p	$: 10 \mathrm{p}, 5 \mathrm{p}, 2 \mathrm{p}$
8 p	$: 5 \mathrm{p}, 2 \mathrm{p}, 1 \mathrm{p}$	18 p	$: 10 \mathrm{p}, 5 \mathrm{p}, 2 \mathrm{p}, 1 \mathrm{p}$
9 p	$:$ Not possible		
10 p	$: 10 \mathrm{p}$		

QUESTIONS

(?) What amounts cannot be paid?
(?) How many different amounts can be paid?
(?) What is the greatest amount possible?
(?) What amounts can be paid with just two coins?

EXTENSIONS

Try with a different set of coins, egg. $5 \mathrm{p}, 10 \mathrm{p}, 20 \mathrm{p}, 50 \mathrm{p}$.

Try with just three coins.

Try with two coins the same, e.g. Sp, Sp, 2p, lp.

SUBTRACTION

Investigation of all the possible differences between the numbers of dots on the faces of two thrown dice.

Apparatus

Use standard 1 to 6 dice.

LEVEL UA N SSM HD $\mathbf{1}$ 2 3 4 $\mathbf{5}$ $\mathbf{6}$				
Subtraction facts.				
Subtraction patterns.				
Recording results.				

On paper or in a book: Difference $3 \quad 6-3 \quad 5-2 \quad 4-1$
On squared paper: Difference 3

There are four different ways of obtaining a difference of 2:
Differences 0 to 5 are possible, in the following ways:

QUESTIONS

Which differences are possible?
(?) How many throws give a difference of 0 ?
? What differences are possible if the total dots on the two faces of the thrown dice is 8 ?

EXTENSIONS

Try with different dice, e.g. 3, 4, 5, $6,7,8$ written on the faces of blank cubes.

Try finding dot totals instead of differences.

Spot the difference

You will need
2 dice

These throws have a difference of 3.

Find throws with a difference of 2.

PLACE VALUE

Selection of two digits from four to make different two-digit numbers.

Apparatus

Use cards numbered 1 to 9.

LEVEL	UA	N	SSM	HD
1	\ominus			
2	\ominus	\ominus		
3	\ominus			
4				
5				
6				

- Ordering numbers.
- Place value.
- Recording results.

Twelve different two-digit numbers are possible:

These can be ordered:
$12,14,15,21,24,25,41,42,45,51,52,54$.

QUESTIONS

EXTENSIONS

How many different two-digit numbers are possible?

What is the smallest/largest possible number?

How many numbers have a 4 in the tens place?

How many have a 5 in the units place?Which number is nearest to 30 ?, to $40 ?, \ldots$

Make two-digit numbers.

Find some more two-digit numbers.

Special paper 1

© HarperCollins Publishers Ltd. This page may be copied for use in the classroom (see page 2)

Special paper 3

Special paper 4

© HarperCollins Publishers Ltd. This page may be copied for use in the classroom (see page 2)

Special paper 5

The investigations in Spectrum Maths come in three books which will complement and enrich any mathematics scheme.
Starting Investigations for National Curriculum Levels 1-3 ISBN 0003126935

More Investigations for National Curriculum Levels 2-5
ISBN 0003126943
Go Further with Investigations for National Curriculum Levels 3-6 ISBN 0003126951

Clear easy-to-use instructions for the teacher:

- National Curriculum Attainment Levels at a glance
- Notes outlining possible results of the activities
- Ideas for consolidation, development and extension

Photocopiable pages for the children:

- Well-thought-out activities for children of 5-14 working at Levels 1 to 6
- Special sheets to help with recording
- Simple language
- Attractive presentation

Also available in the Spectrum Maths series:
For National Curriculum Levels 1-3
Starting Algebra/Shape and Space ISBN 0003126846
Starting Data Handling
Starting Number Skills
ISBN 000312696 X
ISBN 0003126870
Starting Games
ISBN 0003126900
For National Curriculum Levels 2-5
More Algebra/Shape and Space
ISBN 0003126854
More Data Handling ISBN 0003126978
More Number Skills
ISBN 0003126889
More Games
ISBN 0003126919
For National Curriculum Levels 3-6
Go Further with Algebra/Shape and Space ISBN 0003126862
Go Further with Data Handling
Go Further with Number Skills
ISBN 0003126986
ISBN 0003126897
Go Further with Games
ISBN 0003126927

