SMILE WORKCARDS

Division Pack One

Contents

	Title	Card Number
1	Dividing Strips	834
2	24 Squares w/s	881
3	Deal the Cards	863
4	Sharing Counters	866
5	Dividing Counters	867
6	Short Division	832
7	Short Division-Carrying	833
8	Patterns with 11 and 13	164
9	A Problem of Division	1946
10	Odd One Out	758
11	Multiples of 3 and 9	1429
12	Dividing by Guessing	1424
13	Decimal Estimation	1306

DIVIDING STRIPS

 $24 \div 4$

Cut a strip 24cm.

Fold into 4.

How long?

 $16 \div 8$

Cut a strip 16cm.

Fold into 8.

How long?

Stick 1/8 of 16cm into your book: write 16cm ÷ 8 = ■

 $18 \div 3$

Folding into 3 is more difficult!

Stick ⅓ of 18cm into your book: ■ ÷ ■ = ■

Use strips of gummed paper to divide:

- 4) $15 \div 3$
- $5)20 \div 4$
- 6) $32 \div 8$
- 7) 20 ÷ 8
- 8) $10 \div 4$
- 9) $52 \div 4$
- 10) 24 ÷ 6 (How will you fold it?)

24 Squares

3 24
23
22
19 20 21 22
20
19
18
17
15 16 17 18
15
14
13
12 13
11
10
6
8
7
9
5
4
3
2
_

1) Colour them in 2's

21	
4	
3	
7	
-	

 $24 \div 2 = 12$

 $24 \div 3 =$

2) Colour them in 3's

55	
ന	
ന	
က	
8	
2	
2	
8	

3) Colour them in 4's

П

24 ÷

П

4.

4) Colour them in 6's

5) 24 ÷ 8 =

13) 36 ÷ 9 =

11) $36 \div 4 =$

- 2) "Bridge" is a card game for 4 players. Deal all the cards . . . 52 ÷ 4 = How many each?
- 3) In "Sevens" the four 7's are taken out. Deal the other 48 cards:

For 4 players, how many cards each 48 ÷ 4 = M

For 8 players,

48 ÷ 8 = **3**

For 6 players,

48 ÷ 6 =

For 3 players?

- 4) "Teen Do Panch" is an Indian card game for 3 players. 30 cards are used. How many cards each?
- 5) In "Whist" all the cards are used. Each player has 13 cards.How many players are needed? 52 ÷ = 13
- 6) (a) 3 players play "Rummy" with the whole pack. They have seven cards each . . .

How many remain?

- (b) What is the largest group that can play Rummy? How many cards remain?
- 7) In "Brag" the whole pack is used. Each player has 9 cards.

How many can play? Any remainder?

Discuss

How many can play Rummy using picture cards only?

You will need counters

- 1) Share 12 counters into 2 equal sets. How many in each set? Write your answer: 12 ÷ 2 =
- 2) Share 12 counters into 3 equal sets. How many in each? Write:

4) Use counters to work out

Sharing Counters

You will need counters

Dividing Counters

1) Take 15 counters. Divide them into sets of 3.

How many sets? Write in your book:

2) Take 23 counters. Divide them into sets of 5.

How many sets?

It's four sets, but there are some left over.

Write in your book:

- 3) Take 18 counters.
 - (a) Divide into sets of 6. Write $18 \div 6 = 10$
 - (b) Divide into sets of 5. Write 18 ÷ 5 =■, remainder ■
- 4) Use counters to answer these. If there is a remainder, say what it is.

 - (a) $17 \div 3$ (b) $25 \div 5$ (c) $21 \div 4$ (d) $7 \div 2$
- (e) $35 \div 7$ (f) $35 \div 6$ (g) $43 \div 7$ (h) $31 \div 9$

SHORT DIVISION

Now try these:

1)
$$84 \div 2$$
 4) $63 \div 3$

7)
$$840 \div 4$$

2)
$$77 \div 7$$
 5) $80 \div 8$

$$5)80 \div 8$$

$$3)84 \div 4$$

SHORT DIVISION— CARRYING

Now try these:

1)
$$72 \div 3$$

4)
$$84 \div 3$$

7)
$$906 \div 6$$
 10) $158 \div 6$

$$2) 91 \div 7$$

5)
$$934 \div 3$$

8)
$$253 \div 7$$

$$3) 56 \div 4$$

6)
$$812 \div 4$$

Patterns with 11 and 13

1	2	3	4	5	8	7	8	9	10
1)	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	23	30
31	32	扮	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	82	63	64	85	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	33	94	95	96	97	98	39	100

Take a 100 - square

Shade the numbers
11, 22, 33, ---
and all multiples of 11

Copy this pattern and finish it :-

$$\frac{1+9}{1+9} = 10$$

$$\frac{2+8}{11)30}$$

$$2+8=10$$

Turn over

This time shade the multiples of 13 (13, 26, 39, ----)

1	2	3	4	5	8	7	8	9	10
11	12	113	14	15	16	17	18	19	29
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38		40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	82	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	98
91	92	93	94	95	96	97	98	99	100

Now copy this pattern and finish it:-

A Problem of Division

An activity for 2 or more.

You may not use a calculator.

- Explain how you worked out the answer.
- Does your method work for 266 ÷ 14?
- Can you find a different method?

ODD ONE OUT

Look at this set of five numbers:

{ 53, 123, 137, 143, 158 }

WHICH IS THE ODD ONE OUT?

You can make the other three odd one out with other rules.

These three will do:

- (1) Which rule makes which number odd one out?
- (2) Here is an easier set of numbers: { 9, 25, 64, 79 }
 Find four rules to make each number in turn odd one out.
- (3) Make up a set of numbers and rules yourself.

Multiples of 3 and 9

1. Write the multiples of 3 in a column.

Continue the pattern	snown nere.	If the pattern	goes wrong, find	your mistake.
0	S	=	0	>

								1+2=3		1+2=3	1+5 =6	
			= 3	9=	et			= 12 +		-12-	4 91 =	
			->1+2=	+1+5:	1+8	1+24		7 3+9		9+9 4	6+9 4	
r	0	6	12	13	81	17	77	34	111	99		

- Continue the table to include some multiples of 3 which are bigger than 100.
 Does the pattern still work?
- Make a new table for some numbers which are not multiples of 3. What do you notice?
- 4. Write the multiples of 9 in a column. Can you find a pattern for multiples of 9?
- Is 297 114 236 a multiple of 3? Say why.

5.

- 6. Is 67 421 502 a multiple of 9? Say why.
- Write down 3 more large numbers which are multiples of 3.
 Divide your numbers by 3 to check.
- 8. Write down some multiples of 9 and check them.

Dividing by Guessing

DECIMAL ESTIMATION

You will need a calculator

WHAT'S 24 - 5?

....4 AND A BIT!

....4 REMAINDER4....

....4 POINT SOMETHING

4 POINT WHAT? — 25 ÷ 5 = 5 SO 24 ÷ 5 MUST BE JUST A LITTLE LESS

.... I GUESS 4.9

.... I GUESS 4.4

.... 1 GUESS 4.8

- 1) Write down your guess for $24 \div 5$.
- 2) Use a calculator to find $24 \div 5$.

 Copy and complete this table.
 For each question make a sensible guess first and then use a calculator.

	GUESS	CALCULATOR
17÷4		
15÷4		
17÷2		
25÷4		
101÷10		
7÷2		
16÷5		
19÷5		
18÷8		
19 ÷ 8		
23÷3		
29 ÷ 7		

4) The correct answer for the question on the front was 4.8

Check this answer by multiplying:

The answer should be 24. Why?

5) Check five of the answers in question (3) by multiplying.