
	

Isaac Computer Science Student Activity Booklet 

 Recursive Programming Solutions

[bookmark: OLE_LINK56][bookmark: OLE_LINK57][bookmark: OLE_LINK5][bookmark: OLE_LINK6][bookmark: OLE_LINK7][bookmark: OLE_LINK8][bookmark: OLE_LINK88][bookmark: OLE_LINK89]Activity 1: Visualise			 Python Tutor: http://tiny.cc/37czyz

· Run this code in the Python Tutor visualiser.

def sum_to_n(n):
	if n == 1:
 return 1
	else:
 return n + sum_to_n(n-1)
sum_to_n(3)

· Step through the code by pressing the Next button

· Click Edit this code to change the code

· Use the Generate permanent link button to create a link for your own code.

· [bookmark: OLE_LINK12][bookmark: OLE_LINK13]What does this program do?

· How can visualising code execution help in debugging?

Activity 2: Stack Overflow Trinket: https://trinket.io/python3/f5edfef789

· Create a recursive function that takes an integer argument, prints it out, increments it by 1 and then calls itself, passing in the new value.

· How many calls to itself does it manage before we get a ‘stack overflow’?

· To overcome this issue, we need to introduce what is known as a ‘base case’. Use the recursive structure to write a base case for your function.

· Hint: The known condition should be one less than the recursive depth allowed by your machine.

if (condition for which answer is known):
statement # base case
else:
	recursive function call # general case

[bookmark: OLE_LINK15][bookmark: OLE_LINK16]

Activity 3: Factorial	 Trinket: https://trinket.io/python3/229debde2f

· [bookmark: OLE_LINK27][bookmark: OLE_LINK28][bookmark: OLE_LINK3][bookmark: OLE_LINK4]Given the following recursive function to calculate the factorial of a number:

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n - 1)

print(factorial(5))

· Trace the execution of the factorial function call factorial(5) step-by-step and fill in the table below to show the values of x, whether the base case condition is met (if n = 0) and the value returned at each level of recursion.

	Level
	n
	if n = 0:
	Return

	0
	5
	F
	

	1
	
	
	

	2
	
	
	

	3
	
	
	

	4
	
	
	

	5
	
	
	

· Start at Level 0 with n = 5 and trace the recursive calls until the base case is reached.
· For each level, note whether the condition if X = 0 is true (T) or false (F).
· Calculate the value returned at each level after the base case is reached and the recursion starts to unwind.
· Fill in the final returned value at each level in the “Return” column.

Activity 4: Tail Recursion Trinket: https://trinket.io/python/dec0c23d73

· Given the following recursive function to calculate the factorial of a number using tail recursion:

def factorial(n, a=1):
 if n == 0:
 return a
 else:
 return factorial(n - 1, n * a)

print(factorial(5))

· Trace the execution of the tail recursive function call factorial(5) step-by-step and fill in the table below to show the values of n, whether the base case condition is met (if n == 0) and the value returned at each level of recursion.
·
	Level
	n
	a
	if n = 0:
	Return

	0
	5
	1
	F
	

	1
	
	
	
	

	2
	
	
	
	

	3
	
	
	
	

	4
	
	
	
	

	5
	
	
	
	

· Start at Level 0 with n = 5 and a = 1 and trace the recursive calls until the base case is reached.
· For each level, note whether the condition if n == 0 is true (T) or false (F).
· Calculate the value returned at each level after the base case is reached and the recursion starts to unwind.
· Fill in the final returned value at each level in the “Return” column.

[bookmark: OLE_LINK29][bookmark: OLE_LINK30]

Activity 5: Recursion vs Iteration
Trinket: https://trinket.io/python3/c4e26afe09

· The algorithm represented using the recursive function below calculates the factorial of a number. Your task is to develop an equivalent iterative function (naive_factorial) to achieve the same result.

def recursive_factorial(n):
 if n == 0: # base case
 return 1
 else: # general case
 return n * recursive_factorial(n - 1)

What you need to do:

· Task 1: Write the Python program for the naive_factorial function described above using the pseudocode below:

FUNCTION naive_factorial(n):
 result ← 1
 WHILE n > 0 DO:
 result ← result * n
 n ← n - 1
 END WHILE
 RETURN result
END FUNCTION

· Task 2: Test the program by showing the result of entering 5 and 7. Use the following code to compare both functions:

[bookmark: OLE_LINK42][bookmark: OLE_LINK43]# Testing recursive factorial
print("Recursive Factorial of 5:", recursive_factorial(5))
print("Recursive Factorial of 7:", recursive_factorial(7))

Testing naive factorial
print("Naive Factorial of 5:", naive_factorial(5))
print("Naive Factorial of 7:", naive_factorial(7))

· Task 3: Compare the result of the naive_factorial function with the recursive_factorial function for the inputs 5 and 7. Ensure both functions produce the same output.

	[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK52][bookmark: OLE_LINK53][bookmark: OLE_LINK41]Copy and paste your python solution or add a screenshot here.

[bookmark: OLE_LINK31][bookmark: OLE_LINK32]Activity 6: Which is best? Trinket: https://trinket.io/python3/40d72ed135

· Compare the time efficiency of the naive/iterative and the elegant/recursive factorial algorithm.

· Hint: Use the following test to measure the efficiency of each algorithm.

import time
start = time.time()
for count in range(10000):
 x = 1 + 1 # The code you want to test
end = time.time()
print(end - start)

· Which algorithm was most time efficient?

©STEM Learning Limited. All rights reserved.
STEM Learning operates the National STEM Learning Centre and Network, alongside other projects supporting STEM Education.
www.STEM.org.uk

[image: A yellow and blue rectangle with black text

Description automatically generated]

image1.png
Isaac
Computer
Science

Yy

