
Isaac Computer Science Student Activity Booklet
Object Oriented Programming

Activity 1: Pet object Attributes

Produce a formal definition of the pet object in the table below. You should include the data type of each attribute, and an example of the data, so that you are clear about the nature of each attribute.

	Attribute
	Data Type
	Example

	
	
	

	
	
	

	
	
	

	
	
	

Activity 2: Class Diagrams

Use your formal definition of the Cat class from Activity 1 to complete the top and middle sections of this class diagram. We will consider the bottom section, the methods, later.

Note: In UML, classes are represented by boxes that contain three sections:

· The top section contains the name of the class
· The middle section contains the attributes of the class
· The bottom section contains the methods of the class (the operations that the class can execute.)

	Class Name

	

	

Activity 3: Getter and Setter Methods

Complete the bottom section of the Pet class diagram below. You should include a getter method for each attribute and a setter only if you can justify its inclusion for the children’s game.

	Pet

	+ Name: string
+ Type: string
+ Colour: string
+ Mood: string

	

[bookmark: OLE_LINK21][bookmark: OLE_LINK22][bookmark: OLE_LINK23][bookmark: OLE_LINK24]Activity 4:			Trinket: https://trinket.io/python3/137fad7687

[image: A screenshot of a computer program

Description automatically generated]

Task 1: Create a new pet object, a cat called 'Romeo'

[bookmark: OLE_LINK73][bookmark: OLE_LINK74]my_object = Pet('name', 'type', ‘colour’)

Task 2: Use the setter method to change it’s name to 'Juliet'

[bookmark: OLE_LINK75][bookmark: OLE_LINK76]my_object.set_name('new name')

Task 3: Use the getter method to check the change has been successful

[bookmark: OLE_LINK81][bookmark: OLE_LINK82]print(my_object.get_name())

Task 4: Complete the ‘describe’ method, so that it returns the pet object’s name, type and colour as a string.

[bookmark: OLE_LINK77][bookmark: OLE_LINK78]return "I am a " + str(self.colour) + " " + str(self.type)\
+ " called " + str(self.name)

Task 5: Call the new ‘describe’ method of your pet object

print(my_object.describe())

Activity 5: Inheritance			
[image: A class diagram for the Pet super class and Cat and Dog subclasses. The datatypes of the attributes and methods of the subclasses are missing.]

· [bookmark: OLE_LINK71][bookmark: OLE_LINK72]This UML diagram depicts the relationship between the superclass Pet and the subclasses Cat and Dog. Missing from the diagram are the data types for some of the attributes, method parameters and return values. Enter the missing values in the table below.

	
	Data Type

	A
	

	B
	

	C
	

	D
	

	E
	

	F
	

	G
	

Activity 6: Super & Subclasses

[image: A computer screen shot of text

Description automatically generated]

i) Study the class definitions for the Pet class (line 1) and the Cat class (line 15). How can you determine, which is the superclass and which the subclass?

ii) In the constructor of the Cat class, there is call to the constructor of the Pet class (line 18). Why is this necessary?

iii) "If the describe() method exists in both the Pet class and the Cat subclass, it represents method overriding, a type of polymorphism. What would be the differing outputs when invoking the describe() method on instances of the Pet and Cat classes?"

Activity 7:		 	Trinket: https://trinket.io/python3/10c64b72c4
Use the Activity 7 trinket or activity7.py python file to complete the following tasks:

1. Scroll down to the bottom of the code (line 38)
2. Check if the pet_type entered by the user is "cat" (case insensitive).
3. If it's a cat, create a new instance of the Cat class with the provided pet_name and pet_colour.
4. Then call the describe() method of the Cat object. This will invoke the describe() method of the Cat class and not the parent Pet class due to method overriding.
5. Next, call the get_lives() method and print the current number of lives the cat has.
6. Call the lose_life() method to decrement the cat's lives by one.
7. Finally, call the get_lives() method again and display the updated number of lives.

[image:][image:]
image1.png
- class Pet:

1
2
3 # Constructor

4- def __init__(self, given_name, given_type, given_colour):
5 self.name = given_name

6 self.type = given_type

7 self.colour = given_colour

8

9- def get_name(self): # getter method

10 return self.name

11

12- def set_name(self, new_name): # setter method
13 self.name = new_name

14

15- def describe(self):

16 pass

17

18 '

19 1. Create a new pet object a cat called Romeo

20 2. Use the setter method to change it's name to Juliet

21 3. Use the getter method to check the change has been successful

22 4. Complete the describe method, to return the object's attributes as a string
23 '

image2.png
Pet

\V4

+ name: string
+ type: string
+ colour: string

Cat

+ lives: A

+ describe(): string
+ get_lives(): B
+ lose_life(C):D

+ get_name(): string
+ describe(): string

Dog

+ tricks: List<string>

+ describe(): E
+ add_trick(F)
+ get_tricks(): G

image3.png
1- class Pet:

2- def __init__(self, given_name, given_type, given_colour):
3 self.name = given_name

4 self.type = given_type

5 self.colour = given_colour

6

7.

8

def get_name(self):
return self.name

©

10- def describe(self):
11 return "I am a "
12

13 # Define a new subclass 'Cat' which inherits from the 'Pet' superclass
14- class Cat(Pet):

15 # constructor

16- def __init__(self, given_name, given_colour):

+ str(self.colour) + + str(self.type) + " called " + str(self.name)

17 # Calling the __init__ method of the superclass 'Pet'
18 super().__init__(given_name, 'Cat', given_colour)

19 # Assigning the attribute 'lives'

20 self.lives = 9

21

22 # The describe method is also present in the Pet class this is an example of method overriding,
23 # which is a form of polymorphism.

24- def describe(self):

25 return "Meow, I am a
26

27 # Method to get the current number of lives of the Cat object.

28- def get_lives(self):

29 return self.lives

30

31 # Method to decrement the 'lives' attribute of the Cat object by 1.
32- def lose_life(self):

33 self.lives =1

+ str(self.colour) + + str(self.type) + " called " + str(self.name)

image4.png
X

image5.png
National Centre
= for Computing
Education

