
Sorting Algorithms

Handout 1 – Sorting Algorithms

Task 1 - Bubble sort

1. For each of the below, show the stages of the bubble sort when applied to the data sets:-

	Chris
	Ben
	Fran
	Vishwa
	Neil
	Lauran

	Ben
	Chris
	
	
	
	

	Ben
	Chris
	Fran
	
	
	

	Ben
	Chris
	Fran
	Vishwa
	
	

	Ben
	Chris
	Fran
	Neil
	Vishwa
	

	Ben
	Chris
	Fran
	Neil
	Lauran
	Vishwa

Pass 1

	Ben
	Chris
	
	
	
	

	Ben
	Chris
	Fran
	
	
	

	Ben
	Chris
	Fran
	Neil
	
	

	Ben
	Chris
	Fran
	Lauran
	Neil
	

	Ben
	Chris
	Fran
	Lauran
	Neil
	Vishwa

2. How many passes would it take to put the following list in ascending alphabetical order?

	10
	1
	8
	2
	3

Number of passes = 3 (2 to sort and one for final check)

	1
	10
	
	
	

	1
	8
	10
	
	

	1
	8
	2
	10
	

	1
	8
	2
	3
	10

	1
	8
	
	
	

	1
	2
	8
	
	

	1
	2
	3
	8
	

	1
	2
	3
	8
	10

3. For each of the below, show the stages of the bubble sort when applied to the data sets.

	3
	7
	2
	6
	2

	3
	7
	
	
	

	3
	2
	7
	
	

	3
	2
	6
	7
	

	3
	2
	6
	2
	7

	2
	3
	
	
	

	2
	3
	6
	
	

	2
	3
	2
	6
	

	2
	3
	2
	6
	7

	2
	3
	
	
	

	2
	2
	3
	
	

	2
	2
	3
	6
	

	2
	2
	3
	6
	7

Task 2 - Merge sort

1. Show the steps that a Merge sort would take to put the following names into ascending alphabetical order (from A to Z).

	Chris
	Ben
	Fran
	Vishwa
	Neil
	Lauran

	Split the items into individual items. (Make sure to show in an exam all steps)

Rebuild list putting items in order.

Ben, Chris Fran, Vishwa Lauran, Neil

Ben, Chris, Fran, Vishwa Lauran, Neil

Ben, Chris, Fran, Lauran, Neil, Vishwa

2. Show the steps that a Merge sort would take to put the following numbers into ascending alphabetical order (e.g from 1 to 100).

	100
	1
	4
	3
	5
	6
	90
	55
	23
	27

	Split the items into individual items.

Rebuild list putting items in order.

100 1 4 3 5 6 90 55 23 27

1, 100 3, 4 5, 6 55, 90 23, 27

1, 3, 4, 100 5, 6, 55, 90 23, 27

1, 3, 4, 6, 55, 90, 100 23, 27

Final ordered list = 1, 3, 4, 6, 23, 27, 55, 90, 100

Task 3 - Insertion sort
1. Show the steps that an Insertion Sort would take to put the following list into ascending alphabetical order (from A to Z).
	
sorted
	unsorted
	

	index
	0
	1
	2
	3
	4
	5
	6

	value
	Sydney
	Salt Lake City
	Athens
	Turin
	Beijing
	Vancouver
	London

	Sydney
	
	
	
	
	
	

	Salt Lake City
	Sydney
	
	
	
	
	

	Athens
	Salt Lake City
	Sydney
	
	
	
	

	Athens
	Salt Lake City
	Sydney
	Turin
	
	
	

	Athens
	Beijing
	Salt Lake City
	Sydney
	Turin
	
	

	Athens
	Beijing
	Salt Lake City
	Sydney
	Turin
	Vancouver
	

	Athens
	Beijing
	London
	Salt Lake City
	Sydney
	Turin
	Vancouver

2. Show the steps that an Insertion Sort would take to put the following list into ascending numerical alphabetical order (e.g. from 1 to 10).
	
sorted
	unsorted

	index
	0
	1
	2
	3
	4

	value
	15,15
	25,25
	13,13
	29,29
	18,18

	15,15
	25,25
	
	
	

	13,13
	15,15
	25,25
	
	

	13,13
	15,15
	25,25
	29,29
	

	13,13
	15,15
	18,18
	25,25
	29,29

3. An insertion sort is used to put the following words into ascending alphabetical order (from A to Z).
	pumpkin
	flour
	wall
	house
	wall

	pumpkin
	
	
	
	

	flour
	pumpkin
	
	
	

	flour
	pumpkin
	wall
	
	

	flour
	house
	pumpkin
	wall
	

	flour
	house
	pumpkin
	wall
	wall

4. Tick (✓) one box in each row to identify whether each statement about the insertion sort is true or false.
	Statement
	True (✓)
	False (✓)

	The list of words is initially split into a sorted portion and an unsorted portion.
	X
	

	The insertion sort uses a divide stage and then a conquer stage.
	
	X

	The list of words must be in order before the insertion sort can start.
	
	X

	Each word is inserted into the correct place in the array/list, one by one.
	X
	

	The insertion sort will not work because the word “wall” appears twice.
	
	X

[image:][image:]
Task 4 – Comparison

[image:]

Task 5 – Gameboard

Complete the assignment (gameboard) on the Isaac Computer Science website.
​
https://isaaccs.org/assignment/9c661cf8-3cbb-41b8-a7a9-7e604041c77c

image3.png
Insertion Sort
http:/itiny.cclinsert-ani

Bubble Sort
http://tiny.cc/bubble-ani

Merge Sort
http:/itiny.cc/merge-ani

Efficient for smaller data sets, but not on
larger lists.

Adaptive, reduces the total number of
steps if the list is partly sorted.

Sorts the array by placing one at a time
into the correct place on the (left hand)
side of the list.

Next item is compared to the sorted
array on the (left) and this is repeated
until the final item has been placed.

References to left hand side are as a
human sees it, but the computer just
looks at each value and compares with
the lowest values that have already
been sorted.

Large values are always sorted first.

Only takes one iteration to check the list is
sorted.

Starts at the beginning of the list, compares
the first pair of values and swaps the pair of
values if needed.

Works its way along the list comparing each
pair of values. When all the pairs of values
have been compared, that is the end of a
pass.

Multiple passes are made until the sort is
complete.

The final pass will be when no swaps are
made which means the list is in order.

Separates a list into two smaller lists and
then keeps repeating this until each list has
only one value in it.

Pairs of lists with one value are combined
and sorted into order to make a sorted list of
two values. This then repeats for a pair of
lists of two values to make a sorted list of
four values.

The process above repeats until all values
are in one sorted list.

Divide and Conquer algorithm.
Breaks down a problem into sub-problems.

Solutions to the sub-problems are then
combined.

Uses recursion.

image1.png
X

image2.png
Isaac
Computer
Science

Yy

