
	

Isaac Computer Science Student Activity Booklet

The Functional Programmer's Crash Course: Immutable & Elegant

Activity 1: Domain & Co-domain	Trinket - http://tiny.cc/er9uvz

[image: A screenshot of a computer

Description automatically generated]

· If a student receives a score of 105, is that within our function's domain?"

· If you call the grade_student() function passing in each of the test_scores in turn . “D” and “F” will not be returned, are these grades still in the co-domain?

· Which scores would output i) “D” ii) “F”?

Activity 2a: First class objects		Trinket: http://tiny.cc/pnauvz

[image: A white background with green and red text

Description automatically generated]

1. What is the result of assigning greet to say_hello and then calling say_hello()?

[image: A screenshot of a computer code

Description automatically generated]

2. How does the compute function illustrate the concept that in Python, functions are first-class objects?"

[image: A screenshot of a computer flowchart

Description automatically generated]

3. In the multiplier function, how is the factor variable being used by the nested multiply_by_factor function?

Activity 2b: Data structures			Trinket: http://tiny.cc/qvgyvz

Predict:
· Before running the program, predict what the program does. Can you guess what the math_quiz function's purpose is and how it uses the operations list?

Run:
· Run the program and observe the output. Does it match your predictions?

Investigate:
· Look at how the operations list is structured. It contains tuples, each with a string representing an arithmetic operation and a corresponding function object.
· Manually select a tuple from the operations list and call the function yourselves with two numbers and see the result.

Modify:
· Add another operation, like modulo (%), to the operations list. You will need to write a new function and add it to the list to see if it gets selected and executed during the quiz.

Make:
· Finally, try and make your own version of the program. You could create a more complex quiz, perhaps with different types of questions, or you could store the functions in a different data structure, like a dictionary, to see how it changes the way the functions are selected and executed.

Activity 3: Partial functions 			Trinket: http://tiny.cc/5jgyvz

· Modify the Trinket program to include a "buy one, get one half off" discount function. This discount applies 50% off the price of a second item of equal or lesser value when two items are purchased. You will need to create a new function that calculates the discount and then use partial to create a specialized function for it.

· Follow these steps to complete the task:

1. Define a new function named bogo_half_off that accepts two arguments: price1 and price2. This function should calculate the total cost when the second item is half-price.
2. Use functools.partial to create a new specialised bogo function with the price of the first item. This new function should only need one price argument to calculate the total cost. Assume, that the second price is less than or equal to the first.
3. Add test cases to check the new bogo_half_off function with different price inputs.

Activity 4: Image Processing		Trinket: http://tiny.cc/2hiyvz

· Use partial from the functools module to create new functions from the existing ones. For example, create a new function that always applies a blur with a specific strength or reduces the size to a specific percentage of the original.
· Refactor the process_image function to use these new partial functions instead of the original functions.
· Test the refactored process_image function to verify that it still performs the same sequence of operations correctly.

Activity 5a: Immutable data 			Trinket: http://tiny.cc/h2kyvz

Challenge 1:

· Identify the 4 data types shown in lines 5 - 8 of the Trinket code.
· Uncomment each of the data types one at a time and attempt to change one of the elements to observe what happens.
· Why does Python raise a TypeError when trying to change an integer, tuple or string, but not a list?

Challenge 2:

· Predict what will happen when each data type is used as the key for my_dictionary. Which ones will cause a TypeError and why?
· Uncomment each data type one at a time (integer, string, tuple, list) and attempt to run the code.
· For each TypeError explain why it was raised.
· Why is it important that dictionary keys are immutable?

Activity 5b: Pure functions & side effects Trinket: http://tiny.cc/0glyvz

· Predict the behaviour of each function and decide whether it is pure or impure. Base your predictions on whether the function's return value is solely determined by its input parameters and whether the function has any observable side effects.

· Call each function with specific arguments and observe any changes outside the function's scope. You should call increment_and_square multiple times with the same argument to see if the global call_count changes. You should also call add_to_shared_data to see if the shared_data list is modified.

· After you have investigated each function, make a final decision which are pure and which are impure. Record the side effects, that were observed and why they matter.

· Modify the impure functions to make them pure, if possible. For example, you might remove the global variable and pass call_count as a parameter, return a new list instead of modifying shared_data.

Activity 6: Higher order functions	Trinket: http://tiny.cc/wstyvz

· Predict what each higher-order function does with the provided function argument. For example, what does map(square, numbers) do with the square function and the numbers list?
· Run the program and observe the output. Does it match your predictions? Change the arguments and note the effects.
· Modify the functions passed to map, filter, and reduce. For example, you could write a new function to replace square that adds a constant to each number and observe how that affects the output of map; you could use filter to extract numbers from a list that are prime or for reduce, you could change the operation to addition.

Activity 7: Head & tail operations		Trinket: http://tiny.cc/j2wyvz

· Predict what the head and tail will be for the sample_list and what the output of both recursive functions will be when called with numbers.
· Run the code and verify if your predictions are correct.
· Change the sample_list and numbers list and observe how the head and tail change and how the output of the recursive functions changes.
· Modify the recursive_sum use lst[-1] as the head and lst[:-1] as the tail. What impact does this have on the output?
· Make a new recursive function that uses head and tail operations to perform a different task, such as finding the maximum value in a list.

Activity 8: Procedural vs functional	Trinket: http://tiny.cc/pxwyvz

· Review the Trinket code and note the differences in how the tasks of doubling numbers and filtering even numbers are achieved in procedural vs. functional programming.
· Before running the code, predict the output of both code blocks.
· Identify potential advantages and disadvantages of each approach.
©STEM Learning Limited. All rights reserved.
STEM Learning operates the National STEM Learning Centre and Network, alongside other projects supporting STEM Education.
www.STEM.org.uk

[image: A yellow and blue rectangle with black text

Description automatically generated]

image1.png
1 # Simple grading system
2
3- def grade_student(score):

4
5 This function takes a student's score as an input and returns the grade.
6 Domain: @ <= score <= 100
7 Co-domain: {"F", "D", "C", "B", "A"}

3
9

10- if score < 50:

11 return "F"

12- elif 50 <= score < 60:

13 return "D"

14 - elif 60 <= score < 70:

15 return "C"

16- elif 70 <= score < 90:

17 return "B"

18- else:

19 return "A"

20

21

22 # Let's demonstrate the function with some test cases
23 test_scores = [65, 75, 95, 105]

image2.png
1. Stored in a variable:

def greet():
return "Hello!"

say_hello = greet
print(say_hello()) # This will print "Hello!"

image3.png
2. Passed as an argument to another function:

def square(x):
return x * x

def cube(x):
return x * x * x

def compute(func, value):
return func(value)

print(compute(square, 4)) # This will print 16
print(compute(cube, 3)) # This will print 27

image4.png
call call
multiplier(2) multiply_by_factor(factor)

to double

x* factor

Call double(s)

image5.png
Isaac
Computer
Science

Yy

