Pseudocode 		
Table of Contents
Summary	2
Variables	2
Arrays	2
Comments	2
Conditional Statements	3
Loops	3
Input and Output	4
Functions and Procedures	5
Examples	6

[bookmark: _Toc347643326]Summary
Pseudocode is a way of describing what happens in a computer program. It is set out with the same structure as programming languages but it is meant for human reading instead of machine reading. Pseudocode can be used to show people who don’t know the programming language how the program works or programmers can use it to plan how they are going to make a program.
[bookmark: _Toc347643327]Variables
A variable is data item which has a quantity that is likely to change throughout a program.
	Data Type
	Description

	Integer
	An integer is a data type for representing whole numbers.

	Boolean
	A Boolean is a variable that can hold a single true or false value.

	Real
	A number that can be written as a decimal (a non-recurring decimal).

	Character
	A character is a unit or symbol, including letters, numerical digits and common punctuation.

	String
	A string is a data type which holds a series of characters.

[image:]Strings with characters on!

How do you set the value of a variable?
Shown in pseudocode:
var ← exp

This assigns the value of exp to var.
[bookmark: _Toc347643328]Arrays
An array is a data type that describes a collection of values or variables.
[image:]To set the values in an array using pseudocode:Books, pages, words!

myArr ← [1, 6, 23, 41]
If you have a variable called Book, one dimensional arrays can deal with the page numbers in the Book. Book [63]. Two dimensional arrays can deal with the page numbers and the words in the book – Book [63] [2].
[bookmark: _Toc347643329]Comments
It is important to write comments when writing pseudocode or real code because without comments, code can become confusing. Comments help you and other people understand your code and it will make it easier to change and fix things
How to write a comment in pseudocode:
Syntax:
some text

Example:

this is a comment! hurrah

[bookmark: _Toc347643330]Conditional Statements
Conditional statements run depending on the value of a condition. For example, if a condition lotsofducks is true, then the program might do one thing, and if the condition was false, it would do a different thing.
[image:]How to write an IF statement:If the condition lotsofducks is true, the program would run function [FLEE FOR YOUR LIFE].

IF myVar < 15 THEN
	myVar ← myVar + 1
ELSE
OUTPUT myVarDUCKSTERMINATE!

ENDIF
How to write a CASE statement:
num ← 3 CASE num OF
1: OUTPUT “one”
2: OUTPUT “two”
3: OUTPUT “three”
4: OUTPUT “four”
ELSE
	OUTPUT “Out of range”
ENDCASE
How to decide between an IF statement and a CASE statement:
If you have only two different choices, it’s easier to use an IF statement.
If you have more than two choices, it’s easier to use a CASE statement (you can use an IF statement if there’s more than two choices, but it gets messy and irritating.)
[bookmark: _Toc347643331]Loops
[image:]Sometimes, you might need to make a section of code run over and over again. For example, if you wanted a snowflake to continue falling throughout the program, you’d need the section of code that makes the snowflake fall to repeat, or loop.
Loops can be made using WHILE, FOR and REPEAT. These are loops! In programming code, it’s usually better if your piece of looping code doesn’t have a small child in the middle of it.

While
WHILE myVar ≠ 100
	OUTPUT myVar
myVar ← myVar + 1
ENDWHILE
While the variable isn’t equal to 100, the variable will be printed and the value of the variable will be increased by 1.
For
FOR i ← 1 TO 5
	OUTPUT i
ENDFOR
Will print the value of i, which is 1 to 5 – so it’ll output 1, 2, 3, 4 and 5.
Repeat
REPEAT
	OUTPUT “Enter a number”
	num ← INPUT
	OUTPUT num
UNTIL num = 5
Will print “Enter a number”. When a number is entered, this number will be repeated. This will be done until the number entered = 5.
[bookmark: _Toc347643332]Input and Output
Most programs will need to receive information from the user. For example, the program might need the user’s name, which the user will have to type in. This type of information is called input information. Most programs will also have to output information to the user. For example, the user might need to know his score, which will be stored in one of the program’s variables. The program would need to output the value of his variable. This is called output information.
ReadlineMagic box!

if contents of file fruit.txt is: Output
Input

L1 apple
L2 banana
L3 clementine
line2 ← READLINE(fruit.txt, 2)
This will read the second line of the document. The program will read “L2 banana”.
Writeline
newfruit ← “L4 dragonfruit”
WRITELINE(fruit.txt, 4, newfruit)
WRITELINE(fruit.txt, 2, “empty”)
Contents of fruit.txt is now:
L1 apple
empty
L3 clementine
L4 dragonfruit
Writeline will overwrite a line in the document.
Output
greeting ← ”hello”
OUTPUT “hi”
OUTPUT greeting
#OUTPUT greeting outputs “hello”
Output will print messages, either strings or variables.
Userprint
answer ← USERINPUT
Waits for the user to type something in and then assigns what they type in to the variable.
[bookmark: _Toc347643333][image: http://www.jfmg.co.uk/images/Calculator.jpg]Functions and Procedures
Sometimes, it’s easier to reuse sections of code rather than write the whole thing out again. You can do this by using procedures and functions.
Procedures
Procedures are sections of code that can be reused.
PROCEDURE PoliteProc()
	OUTPUT “Enter your name”
	Name ← USERINPUT
	OUTPUT “Nice to meet you”
	OUTPUT Name
ENDPROCEDURE
Functions
Functions are sections of code that can be reused and can return a value.
FUNCTION IsMember(myArr,val)
	FOR i ← 1 TO LEN(myArr)
		IF myArr[i] = val THEN
RETURN trueWhy is there a stranger shaking my hand? What is happening? Help?

		ENDIF
	ENDFOR
 RETURN false
ENDFUNCTION
[bookmark: _Toc347643334]Examples
Example 1
[image:]
Line 5: The variable cat has the value of “Don’t eat”.
Line 6: The variable dog has the value of “Eat it”.
Line 7: The variable mouse has the value of “Stamp on it”.
Line 9: If you output mouse, the value “Stamp on it” will be outputted.
Example 2
[image:]
Line 5: The value of weeks is 2.
Line 6: The value of days is weeks multiplied by 7. Therefore, the value of days is 14.
Line 7: The value of hours is the value of days multiplied by 24.
Line 8: So, outputting days will output ‘14’.

Example 3
[image:]
Line 5: The value of codes is an array. So codes can be equal to h, e, l, l, or o.
Line 6: The value of secret is 3 + 1 - so secret is 4.
Line 7: Outputting codes[secret] is the same as saying codes[4]. So, you output the fourth value of codes – which is ‘l’.
Example 4
[image:]
Line 5 – 6: The value of ammo is 50 and the value of enemy_distance is 100.
Line 9 – 11: If the enemy_distance is less than 50, then the value of ammo is subtracted by one. Since the enemy_distance is more than 50, the value of ammo remains the same.
Line 13: Therefore, the value ‘50’ is outputted.
Example 5
[image:]
Line 5 – 6: The value of targets is an array. The value of target is 3.
Line 8: Targets[target] is the same as targets[3] – the third thing in the targets array, which is ‘station’.
Line 8 – 12: If targets[target] equalled ‘hospital’, then it would output ‘protect’. However, targets[target] doesn’t equal ‘hospital’, in which case the program would output ‘destroy’.
Example 6
[image:]
Line 5 – 7: The value of temperature is an array. The value of t is the third value in the array of temperature, so, 30.
Line 9 – 16: The CASE bit says that if t is 30, the program should output “OK”. So, the program outputs “OK”.

Example 7
[image:]
Line 5 – 7: The value of city and codenames is an array.
Line 8: The value of target is the length of the third thing in city take away one. The third thing in city is York, which is 4 letters long. 4 take away 1 is 3. So, the value of target is 3!
Line 11 – 14: In the CASE bit, if the city[target] is York (city[3] is York) , you output “Follow” and codenames[target]. Codenames[target] is the same as codenames[3], and the third thing in codenames is 088. Therefore, you output “Follow 088”.

8

image3.jpeg

image4.JPG

image5.jpeg

image6.png
C o w e W e

Pseudocode challenge 1
Points: 5
Theme: Variables

cat < "Don’t eat”
dog « "at it"

mouse « "Stamp on it

QUTPUT mouse]

image7.png
@ w s w e e

Pseudocode challenge 4
Points: 5
Theme: Variables

weeks « 2
days « wesks * 7
hours « days * 24
QUTPUT days|

image8.png
Now s we e

Pseudocode challenge 7
Points: 10
Theme: Variables

codes < ["h", "
secret < 3 + 1]
OUTPUT codes(secret]

image9.png
G e W e

Pseudocode challenge 11
Points: 10

Theme: Conditional statements

ammo < 50

enemy_distance < 160

Shoot if close enough]

1F enemy_distance < 56 THEN
ammo < amro - 1

enoze

QUTPUT ammo

image10.png
I R

Pseudocode challenge 12
Points: 10

Theme: Conditional statements

targets « ["building”, "bridge", "station",
target « 3

IF targets[target]
OUTRUT "protect”
eLse
QUTPUT "destroy”
enoze

ospital” THEN

HO",

pouer plant”, "hospital]

image11.png
G e W e

Pseudocode challenge 16
Points: 10
Theme: Conditional statements

temperatures « [-50, 20, 30, 50,

t « temperatures(3]

casz t oF
-50: OUTPUT "Freeze
20: ouTPUT
301 oUTPUT
se: ouTPUT
se: ouTPUT

100: OUTPUT "Melt"
ENDCASE

80, 100]

image12.png
ERUC RIS

10
1
12
13
14
15
16
Et]

Pseudocode challenge 20
Points: 10

Theme: Conditional statements

city « ["london”, "paris”, "york”, "berli

, "washingtor

codenames « ["607", 016", 088", 312", "853"]
target « LEN(city[3]) - 1

% FOR target « 1 10 LeN(codenames)
CASE city[target] OF
“london": OUTPUT "Meet " + codenames[target]
"york": OUTPUT "Follow " + codenames[target]
eLse
QUTPUT "ttack " + codenames[target]
Enocase
ENDFOR

image1.jpeg

image2.png

