THE DONKEY SANCTUARY
NATIONAL SCHOOLS PROGRAMME

TEACHER GUIDE

ANIMALS AND THEIR HABITATS
KEY STAGE 2: SCHEME OF LEARNING
CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Donkey Sanctuary</td>
<td>4 & 5</td>
</tr>
<tr>
<td>About this resource</td>
<td>6</td>
</tr>
<tr>
<td>Links to the 2014 KS2 National Curriculum</td>
<td>7</td>
</tr>
<tr>
<td>Lessons:</td>
<td></td>
</tr>
<tr>
<td>1. Review of habitats from KS1: Animals and plants</td>
<td>8</td>
</tr>
<tr>
<td>2. Animal structures</td>
<td>9</td>
</tr>
<tr>
<td>3. Micro-organisms</td>
<td>10</td>
</tr>
<tr>
<td>4. Animal digestive systems</td>
<td>11</td>
</tr>
<tr>
<td>5. Food chains and webs</td>
<td>11</td>
</tr>
<tr>
<td>6. Plant reproduction</td>
<td>11</td>
</tr>
<tr>
<td>7. Life cycles of animals</td>
<td>11</td>
</tr>
<tr>
<td>8. Life cycles making task</td>
<td>13</td>
</tr>
<tr>
<td>9. Life cycles making task</td>
<td>14</td>
</tr>
<tr>
<td>10. Life cycles making task</td>
<td>15</td>
</tr>
<tr>
<td>11. Evolution, suitability and adaptations</td>
<td>16</td>
</tr>
<tr>
<td>12. Environmental problems</td>
<td>17</td>
</tr>
<tr>
<td>Educational visits</td>
<td>19</td>
</tr>
<tr>
<td>How you can support us</td>
<td>20</td>
</tr>
</tbody>
</table>
THE DONKEY SANCTUARY

How it started
The Donkey Sanctuary was founded as a charity in 1969, by Dr Elisabeth Svendsen MBE. She dedicated her life to champion donkeys, and it is through her amazing devotion that the Sanctuary grew to the international charity it is today. Sadly Dr Svendsen passed away in 2011 but her memory lives on in our work, as does her eternal motto that, in everything we do, donkeys will always come first, second and third.

Our Vision
A world where donkeys and mules live free from suffering and their contribution to humanity is fully valued.

Our mission
To transform the quality of life for donkeys, mules and people worldwide through greater understanding, collaboration and support, and by promoting lasting, mutually life-enhancing relationships.

Moving forward as one
During the last 45 years, The Donkey Sanctuary has made a profound difference to the lives of donkeys and people all over the world.

However, there is still much to do. By 2018 we want to be able to give a helping hand to two million donkeys each year in 40 countries, to double the number of donkeys in foster care to 3,000 and to expand our donkey assisted therapy programme in the United Kingdom and internationally.

We look forward to working together to make the world a better place for donkeys and mules and to improve the lives of those who rely on them or come into contact with them from all over the world.

WHAT WE DO.
Rescue and Rehoming
Aim: Never to turn away from donkeys and mules in need and provide lifelong care for them in the UK and Ireland.
- **Our Farms:** We currently have an incredible 6,200 donkeys in our care, with around 500 living at our main Sanctuary at Sidmouth, Devon. Our ten farms in the UK and Ireland provide much needed care for the hundreds of donkeys that are relinquished into our care every year.

Donkeys in the Community
Aim: To reduce the suffering of domestic and working donkeys due to neglect, ill-treatment, illness, ignorance and injury.
- **Working Worldwide:** We support projects in 28 countries, carrying out 450,000 veterinary treatments and benefiting over a million donkeys and mules worldwide.
- **Practical Research:** We have an active research team that facilitates and carries out non-invasive research to improve the health, welfare and knowledge-base of donkeys and mules.
- **Donkey Health and Welfare:** We have produced a number of fact sheets to help donkey owners as well as providing training courses for people who are planning to own, or foster, a pair of donkeys.

Human and Donkey Interactions
Aim: To improve the lives of both donkeys and people through positive human and donkey interactions.
- **Donkey Assisted Therapy:** The emotional, physical and calming benefits of animal interactions are evident in our work with both the elderly in care homes and children with additional needs, with 50,000 assisted therapy sessions for being given in 2013. We have Donkey Assisted Therapy centres in Belfast, Birmingham, Ivybridge, Leeds, Manchester, Sidmouth, Ethiopia, Italy, Romania and Spain
- **Education:** We are involved in lifelong education initiatives and the provision of educational resources in the UK and worldwide.

Wild Sanctuary
- **Environment:** To optimize conservation and use of the land entrusted to us. The Donkey Sanctuary currently operates 15 farms and sanctuaries spread across the UK, Ireland, Europe and India (plus 12 licensed holding bases) and in this role enjoys unique opportunities and challenges related to enlightened stewardship of the land in its care.
ABOUT THIS RESOURCE: ANIMALS AND THEIR HABITATS: KS2

This resource has been developed and produced as part of a series by The Donkey Sanctuary with a view to furthering one of its core aims in promoting understanding, care and welfare issues for animals by young people.

It has been developed to cover a range of aspects of the new 2014 KS2 Programmes of Study. It primarily covers the Science POS Animals, Living Things and their Habitats, but it is presented in a project based learning format with many cross curricular links to other areas such as Art and Design, Design and Technology, English and PSHE.

Animals and their Habitats has been developed with teacher and environmental specialist input with an aim to provide a detailed and usable resource for everyday use by teachers.

The resource consists of the following:

- A visually engaging and detailed lesson by lesson Power Point presentation.
- Worksheets to support lessons and key learning points.
- A teacher guide outlining:
 - learning objectives,
 - key questions,
 - lesson structure, content and sequence,
 - links to the new 2014 national curriculum programmes of study.

The pdf version of this resource has been made available on the Times Educational Supplement (TES) website: www.tes.co.uk via The Donkey Sanctuary membership area. The pdf has been made “presentation friendly” by breaking down each animation / reveal onto a separate slide so that it functions well. A Power Point version is available free of charge on CD if you send a contact name, school address and contact details to the email below.

We would welcome any feedback, additions or comments concerning this resource which can be directed to The National Schools Programme Coordinator: carl.wholey@thedonkeysanctuary.org.uk
LINKS TO THE 2014 KS2 NATIONAL CURRICULUM

<table>
<thead>
<tr>
<th>LESSON</th>
<th>Science POS</th>
<th>Design Technology POS</th>
<th>ENGLISH POS</th>
<th>Mathematics POS</th>
<th>Art and Design POS</th>
<th>PSHE POS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8, 9, 10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Science POS
- YR3 identify and describe the functions of different parts of flowering plants.
- YR3 explore what plants need for life and growth.
- YR3 investigate the way in which water is transported within plants.
- YR3 explore the role of plants in the life cycle of flowering plants: seed formation and dispersal.
- YR3 identify that animals and some other plants have skeletons and muscles for support, protection and movement.
- YR3 recognise that environments can change and that this can sometimes pose dangers to living things.
- YR3 describe the simple functions of the basic parts of the digestive system in humans.
- YR4 recognise that living things can be grouped in a variety of ways.
- YR4 explore and use classification keys to help group, identify and name a variety of living things in their local and wider environment.
- YR4 describe the differences in the life cycles of a mammal, a reptile, an insect and a bird.
- YR5 describe the life process of reproduction in some animals.
- YR6 describe how living things are classified into broad groups according to common observable characteristics and based on similarities and differences, including micro-organisms, plants and animals.
- YR7 give reasons for classifying plants and animals based on specific characteristics.

Design Technology POS
- YR3 recognise that living things produce offspring of the same kind, but normally offspring vary and are not identical to their parents.
- YR3 identify how animals and plants are adapted to suit their environment in different ways and that adaptation may lead to evolution.
- YR3 look for changes, similarities and differences in their data.
- YR3 generate, develop, model and communicate their ideas through discussion, annotated sketches, diagrams, charts and graphs.
- YR4 retrieve, record and present information from non-fiction narrative, describing settings, characters and atmosphere and integrating dialogue to convey character and advance the action.
- YR5 pupils should be taught to measure length, mass and volume (in cm/mm).
- YR6 pupils should be taught to interpret and present data using line graphs, bar charts, pictograms, tables and time graphs.
- YR7 pupils should be taught to describe how living things can be grouped according to common observable characteristics and based on similarities and differences, including micro-organisms, plants and animals.
- YR8 pupils should be taught to identify and explain examples of what improves and harms their local, natural and built habitats.

ENGLISH POS
- YR3 identify and describe the functions of different parts of flowering plants.
- YR3 explore what plants need for life and growth.
- YR3 investigate the way in which water is transported within plants.
- YR3 explore the role of plants in the life cycle of flowering plants: seed formation and dispersal.
- YR3 identify that animals and some other plants have skeletons and muscles for support, protection and movement.
- YR3 recognise that environments can change and that this can sometimes pose dangers to living things.
- YR3 describe the simple functions of the basic parts of the digestive system in humans.
- YR4 recognise that living things can be grouped in a variety of ways.
- YR4 explore and use classification keys to help group, identify and name a variety of living things in their local and wider environment.
- YR4 describe the differences in the life cycles of a mammal, a reptile, an insect and a bird.
- YR5 describe the life process of reproduction in some animals.
- YR6 describe how living things are classified into broad groups according to common observable characteristics and based on similarities and differences, including micro-organisms, plants and animals.
- YR7 give reasons for classifying plants and animals based on specific characteristics.

Mathematics POS
- YR3 recognise that living things produce offspring of the same kind, but normally offspring vary and are not identical to their parents.
- YR3 identify how animals and plants are adapted to suit their environment in different ways and that adaptation may lead to evolution.
- YR3 look for changes, similarities and differences in their data.
- YR3 generate, develop, model and communicate their ideas through discussion, annotated sketches, diagrams, charts and graphs.
- YR4 retrieve, record and present information from non-fiction narrative, describing settings, characters and atmosphere and integrating dialogue to convey character and advance the action.
- YR5 pupils should be taught to measure length, mass and volume (in cm/mm).
- YR6 pupils should be taught to interpret and present data using line graphs, bar charts, pictograms, tables and time graphs.
- YR7 pupils should be taught to describe how living things can be grouped according to common observable characteristics and based on similarities and differences, including micro-organisms, plants and animals.
- YR8 pupils should be taught to identify and explain examples of what improves and harms their local, natural and built habitats.

Art and Design POS
- YR3 recognise that living things produce offspring of the same kind, but normally offspring vary and are not identical to their parents.
- YR3 identify how animals and plants are adapted to suit their environment in different ways and that adaptation may lead to evolution.
- YR3 look for changes, similarities and differences in their data.
- YR3 generate, develop, model and communicate their ideas through discussion, annotated sketches, diagrams, charts and graphs.
- YR4 retrieve, record and present information from non-fiction narrative, describing settings, characters and atmosphere and integrating dialogue to convey character and advance the action.
- YR5 pupils should be taught to measure length, mass and volume (in cm/mm).
- YR6 pupils should be taught to interpret and present data using line graphs, bar charts, pictograms, tables and time graphs.
- YR7 pupils should be taught to describe how living things can be grouped according to common observable characteristics and based on similarities and differences, including micro-organisms, plants and animals.
- YR8 pupils should be taught to identify and explain examples of what improves and harms their local, natural and built habitats.

PSHE POS
- YR3 recognise that living things produce offspring of the same kind, but normally offspring vary and are not identical to their parents.
- YR3 identify how animals and plants are adapted to suit their environment in different ways and that adaptation may lead to evolution.
- YR3 look for changes, similarities and differences in their data.
- YR3 generate, develop, model and communicate their ideas through discussion, annotated sketches, diagrams, charts and graphs.
- YR4 retrieve, record and present information from non-fiction narrative, describing settings, characters and atmosphere and integrating dialogue to convey character and advance the action.
- YR5 pupils should be taught to measure length, mass and volume (in cm/mm).
- YR6 pupils should be taught to interpret and present data using line graphs, bar charts, pictograms, tables and time graphs.
- YR7 pupils should be taught to describe how living things can be grouped according to common observable characteristics and based on similarities and differences, including micro-organisms, plants and animals.
- YR8 pupils should be taught to identify and explain examples of what improves and harms their local, natural and built habitats.

THE DONKEY SANCTUARY

ANIMALS AND THEIR HABITATS: KS2

7
Animals and their habitats

Scheme of learning: KS1

12 week programme of 90 minute lessons

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Focus and Learning Objectives</th>
<th>Sequence of activities and content</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grouping and classifying common animals and plants</td>
<td></td>
<td>Animals and their habitats sheet: 1:1</td>
</tr>
<tr>
<td></td>
<td>SCIENCE: To understand and explain how to identify, name, group and sort a variety of plants and animals.</td>
<td>1. What do living things need to live? Discussion with whiteboard prompts. Food, water, air, room to reproduce, room to grow. They get these from where they live: habitats 2. Define what a habitat is: “A special place where plants and animals normally live.” 3. Naming micro and macro habitats task: discussion with whiteboard prompts. 4. Micro or macro slide to discuss why they are classed as such: size, locality, conditions and environment 5. Plant or animal? Discussion on the whiteboard images and getting the students to justify their classification. 6. What is the difference between plants and animals: brainstorm and discussion, feedback and underpinned by whiteboard prompts 7. Discussion point: “What makes and bird, a bird?”: feathers, wings, lays hard eggs, hollow bones (not all birds fly or swim) 8. Compare different animals: discussion on how we could compare the animals and task</td>
<td>Comparing animals sheet: 1:2 Animal grouping sheet: 1:3 Blank Venn & Carroll diagram sheets Animal groups: 1:4 Animal and plant comparison sheet: 1:5</td>
</tr>
<tr>
<td></td>
<td>Describe how living things are classified into broad groups according to common observable characteristics and based on similarities and differences.</td>
<td>Slide 28: Comparing Animals:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To be able to describe and compare the structure of a variety of common animals (fish, amphibians, reptiles, birds and mammals)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Explore and use classification keys to help group, identify and name a variety of living things in their local and wider environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identifying differences, similarities or changes related to simple scientific ideas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To explore what plants need for life and growth.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ENGLISH:
Retrieval, record and present information from non-fiction.

PSHE
Explain factors that affect the health and well-being of living things.

Show empathy for animals and others.

BIG QUESTIONS:
- What do living things need?
- What is the difference between a plant and an animal?
- What makes a bird, a bird?
- How can we group animals and plants?

SIZE
<table>
<thead>
<tr>
<th>Animals</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varied tiny: 0.3m to very large 25cm</td>
<td>Emperor penguin: 112-115cm. Penguins: 40cm – 115cm</td>
</tr>
<tr>
<td>Average 23 – 25cm high, 46cm long</td>
<td>Average tail 30cm</td>
</tr>
</tbody>
</table>

9. Venn diagram sorting of animals
10. Carroll diagram sorting of animals
11. Using classification keys to identify animals
12. What kind of animal would fit into each box on the classification key.
13. Create your own classification keys
14. Introduce grouping animals by class: Mammals, fish, Amphibians, Birds, Reptiles, Arthropods: main features of each
15. Naming animals from each group task, feedback and whiteboard prompts.
16. Other animal groups: molluscs and annelids
17. Review of learning: comparisons: similar and differences?
18. Independent learning
 a) Animal or plant fact file
 b) Classification key for a habitat
 c) Research scientist Carl Linnaeus
 d) Differences between wild and domestic animals
 e) Classifying animals and plants important?

Animal structures

SCIENCE:
Identify that humans and some other animals have skeletons and muscles for support, protection and movement.

Give reasons for classifying

<table>
<thead>
<tr>
<th>Activity</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Do all animals have bones: discussion and feedback: examples?</td>
<td>Do all animals have bones: discussion and feedback: examples?</td>
</tr>
<tr>
<td>2. Human bodies: have bones: how many can you name? Human skeleton sheet.</td>
<td>Human bodies: have bones: how many can you name? Human skeleton sheet.</td>
</tr>
<tr>
<td>3. Crabs: bones? Exoskeleton, get the students to define what it is.</td>
<td>Crabs: bones? Exoskeleton, get the students to define what it is.</td>
</tr>
<tr>
<td>“A rigid external covering for the body.”</td>
<td>“A rigid external covering for the body.”</td>
</tr>
<tr>
<td>4. Name other animals that have exoskeletons. Cover arthropods.</td>
<td>Name other animals that have exoskeletons. Cover arthropods.</td>
</tr>
<tr>
<td>5. Invertebrates: animals without backbones: this includes arthropods.</td>
<td>Invertebrates: animals without backbones: this includes arthropods.</td>
</tr>
<tr>
<td>6. Video: exoskeletons</td>
<td>Video: exoskeletons</td>
</tr>
</tbody>
</table>

The human skeleton sheet: 2:1
Animal structures sheet: 2:2
<table>
<thead>
<tr>
<th>Plants and animals based on specific characteristics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognise that living things can be grouped in a variety of ways.</td>
</tr>
<tr>
<td>Explore and use classification keys to help group, identify and name a variety of living things in their local and wider environment.</td>
</tr>
<tr>
<td>Describe the differences in the life cycles of a mammal, an amphibian, an insect and a bird.</td>
</tr>
<tr>
<td>Give reasons for classifying animals based on specific characteristics.</td>
</tr>
</tbody>
</table>

ENGLISH:
Retrieve, record and present information from non-fiction

PSHE:
Explain factors that affect the health and well-being of living things

BIG QUESTIONS:
- Do all animals have bones?
- How are we similar / different to other animals?

<table>
<thead>
<tr>
<th>7. Video ant colony</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Vertebrates: have a backbone and an internal skeleton: range of animals: mammals, amphibians, birds, reptiles and fish all vertebrates.</td>
</tr>
<tr>
<td>9. Research and skeleton task.</td>
</tr>
<tr>
<td>10. Independent learning</td>
</tr>
<tr>
<td>a) How humans protect themselves and why?</td>
</tr>
<tr>
<td>b) Compare the limbs of a variety of animals</td>
</tr>
<tr>
<td>c) Draw a human skeleton: bones and major muscle groups. Why do we need muscles?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Micro-organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIENCE: Describe how living things are classified into broad groups according to common observable characteristics and based on</td>
</tr>
<tr>
<td>1. Are mushrooms a vegetable? If not, what are they. Brainstorm, Q&A, allow 5 minutes research and get feedback. Mushrooms are the fruit of a fungi micro-organism: the mycelium is the body of the organism.</td>
</tr>
<tr>
<td>2. Slide 74: explain and discuss the mushroom spore and mycelium images.</td>
</tr>
<tr>
<td>3. Life cycle of a mushroom.</td>
</tr>
<tr>
<td>4. Other fungi include: yeasts and moulds: a) Uses of yeast and yeast budding video</td>
</tr>
</tbody>
</table>

| Designing with bacteria sheet: 3:1 |

3
Similarities and differences, including micro-organisms

Identify that animals, need nutrition, and they cannot make their own food; they get nutrition from what they eat.

Describe the life process of reproduction in some animals.

Give reasons for classifying animals based on specific characteristics.

ENGLISH:
Retrieve, record and present information from non-fiction.

BIG QUESTIONS:
- Are mushrooms a vegetable?
- Are micro-organisms good or bad for us?
- What is a virus, how do we “catch a cold”?

5.	Are micro-organisms good or bad for us?
6.	Define micro-organisms and the types: fungi, viruses and bacteria
7.	Bacteria: tiny living organisms that you a microscope to see.
	a. Examples of bacteria and the problems they cause humans
	b. Bacteria are living all around us.
	c. Research the microscopic shapes of bacteria and use them to develop a cover for a CD. (Designing with bacteria sheet 3:1)

8. Viruses:
- Need to enter another living cell to live and reproduce.
- Cause diseases in animals
- How a virus invades your body video

9. Independent learning:
- The use of moulds in food and medicine.
- Research Helicobacter pylori bacteria
- What is the common cold and how is it spread?
- What is chickenpox?
- Explain the use of yeast in some foods.
- Explain what can be done to try and stop the spread of a virus.

<table>
<thead>
<tr>
<th>Food chains and webs</th>
</tr>
</thead>
</table>

SCIENCE
Identify that animals, need nutrition, and they cannot make their own food; they get nutrition from what they eat.

Construct and interpret a variety of food chains, identifying producers, predators and prey.

1. **Discussion:**
 - Why do animals eat? (To survive, to keep healthy, to grow and ENERGY)

2. **Explanation of food chains**

3. **Simple food chain example tasks and discussion**

4. **Plants produce their own food through photosynthesis. They are called “Producers”**

5. **Animals are “CONSUMERS”. Animals are reliant on plant producers and other animals for their food.**

Food chains and webs
Food chain cards: 4:1
Food web sheet: 4:2
Food chain word search: 4:3
Independent learning: Food chains sheet: 4:4
Describe how living things are classified into broad groups according to common observable characteristics and based on similarities and differences, including micro-organisms, plants and animals.

Gathering, recording, classifying and presenting data in a variety of ways to help in answering questions.

BIG QUESTIONS
- Why do animals eat?
- How do plants produce their own food?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>Outline and discussion on “PRODUCERS”, “HERBIVORES”, “CARNIVORES”, “OMNIVORES”</td>
</tr>
<tr>
<td>7.</td>
<td>Card sort into groups using the food chain cards (cut out). Dark green: Producer plants, Light green: Herbivores, Red: Carnivores, Orange: Omnivores</td>
</tr>
<tr>
<td>8.</td>
<td>PRODUCERS and CONSUMERS</td>
</tr>
<tr>
<td>9.</td>
<td>VERTEBRATES and INVERTEBRATES</td>
</tr>
<tr>
<td>10.</td>
<td>HERBIVORES, CARNIVORES and OMNIVORES</td>
</tr>
<tr>
<td>11.</td>
<td>Discuss PREDATOR and PREY definitions</td>
</tr>
<tr>
<td>12.</td>
<td>In table groups construct working food chains with the cards with an increasing number of consumers in them. (1 first, then 2, 3 etc)</td>
</tr>
<tr>
<td>13.</td>
<td>In pairs create a quiz with 5 questions to test the rest of the class about food chains.</td>
</tr>
<tr>
<td>14.</td>
<td>Recap: why do animals eat?</td>
</tr>
<tr>
<td>15.</td>
<td>Discussion on more complex situations: food webs</td>
</tr>
<tr>
<td>16.</td>
<td>Complete the food web (white board or / and worksheet)</td>
</tr>
<tr>
<td>17.</td>
<td>Reinforce food chain vocabulary with the food chain word search.</td>
</tr>
</tbody>
</table>
| 18. | Independent learning:
 a. Complete the food chains sheet
 b. How do animals get energy from their food?
 c. What does “high energy” food mean?
 d. What does a “balanced diet” mean for a human?
 e. Why is too much fat and sugar bad for you?
 f. Explain the following terms;
 • Vegetarian
 • Vegan
 • Diabetic |
Animal digestive systems

SCIENCE:
Identify that animals, need nutrition, and they cannot make their own food; they get nutrition from what they eat.

Describe the simple functions of the basic parts of the digestive system in humans.

Identify that humans and some other animals have skeletons and muscles for support, protection and movement.

ENGLISH:
Retrieve, record and present information from non-fiction.

BIG QUESTIONS:
• Where does the food go that we eat?
• How do animals get energy from their food?

1. Where does the food go that we eat discussion to gauge the level of knowledge in the group.
2. Why do animals eat recap and discussion. So how do animals get energy and other things from their food?
3. Students to draw what they know about where the food goes on sheet 5:1.
4. Card sort task: in pairs / small groups: try and put the digestive organs into order and explain why. Feedback and discuss.
5. Pair up the descriptions with the organs and re-think their order. Discuss.
6. Either students research the correct order or run through as class with whiteboard resources.
7. Organ research: students to research and present their findings on a given organ or part of the body that is associated with digestion.
8. Animal digestive systems: students choose two animals and research their digestive systems, presenting their findings. Importantly they need to explain the differences and similarities between the animals and compare them to humans.
9. Whiteboard resources to feedback about different animals and their digestive systems.
10. Independent learning
 a. What is peristalsis and how does it help?
 b. What does a gall bladder do?
 c. How do chickens eat seeds without teeth?
 d. Herbivore and carnivore comparison.
 e. Research different types of teeth and why they have them.

Where does the food go?
Sheet: 5:1
Human digestive system card sort: 5:2
Human digestive system organ descriptions: 5:3
<table>
<thead>
<tr>
<th>6</th>
<th>Plant reproduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIENCE:</td>
<td>Identify and describe the functions of different parts of flowering plants</td>
</tr>
<tr>
<td></td>
<td>Explore the part that flowers play in the life cycle of flowering plants: pollination, seed formation and seed dispersal.</td>
</tr>
<tr>
<td></td>
<td>Explore the part that flowers play in the life cycle of flowering plants: pollination, seed formation and seed dispersal.</td>
</tr>
<tr>
<td></td>
<td>Describe the life process of reproduction in some plants and animals.</td>
</tr>
<tr>
<td>MATHEMATICS:</td>
<td>Measure, compare, add and subtract: lengths (m/cm/mm)</td>
</tr>
<tr>
<td></td>
<td>Interpret and present data using line graphs, bar charts, pictograms, tables and time graphs.</td>
</tr>
<tr>
<td>BIG QUESTIONS</td>
<td>Why do plants need to reproduce?</td>
</tr>
<tr>
<td></td>
<td>How do plants do that?</td>
</tr>
</tbody>
</table>

1.	Why do plants need to reproduce? Discussion. Outcomes: to keep the species going, no reproduction, no more plants of that type and they will die off. What is it called when all of a species dies off: extinct, when they are under threat of extinction they are called endangered.
2.	The two types of plants reproduction:
	• Asexual: when one cell splits into two, giving two identical cells. These are clones and exact copies. Examples of these are potatoes and daffodils
	• Sexual: when two cells, each with half the DNA needed, combine and create a living cell. This applies to most flowering plants.
3.	The importance of flowers in the sexual reproduction of plants. Students to try and put together the flower puzzle. Solution shown on the next slide.
4.	Students to research and label the parts of the flower. Feedback and check.
5.	The flowering plant life cycle: the pollination, fertilisation, production of seeds, dispersal, germination, plant growth and production of flowers…. Etc.
6.	Plant germination investigation: (before the seed dispersal investigation due to the time needed for germination)
	We are going to investigate what helps seeds germinate into plants:
	• Three pots / plastic cups are prepared with potting compost and a seed is planted in the same way in each.
	• The pots are to be placed in the following places:
	• A dark but warm place (airing cupboard)
	• A cold dark place (a closed refrigerator)
	• A warm light place (a window sill)
	• Look at the seed pots daily and water them the same amount.
	• Record any growth seen in the three pots.
	• After 2 weeks can you explain why the germinated seeds and seedlings look like they do?
	• Can you draw any conclusions from the investigation to help us grow plants in the future?
Results:	The seeds in the refrigerator took the longest to germinate (8 days)
	The seeds on the window-sill and the seeds in the cupboard germinated
quickly (3 days)
This shows that warmth is necessary for germination.
Note that the seeds in the dark cupboard DID start to grow. This shows us that light is not needed for germination
7. Seed dispersal: But how did the seeds get to the soil in the first place?
 Highlight different types of seed dispersal using the whiteboard resources.
9. Parts of a plant: roots, stem, leaf, flower, seed pod / seed / bean
10. Seed dispersal investigation:
 We are going to investigate what properties of seeds helps them with wind dispersal.
 Materials:
 - a variety of seeds and dried beans.
 - materials to construct “artificial seeds” (paper, glue, tape)
 - tape measure
 - stop watch
 - large fan or open window
 Method:
 - Agree an accurate drop height / place and direction near the fan.
 - Drop each type of seed / bean / artificial seed in front of the fan and record: (Drop three times and take an average)
 - The shape, size and mass of the seeds
 - How far it flies from the drop point
 - How long it stays in the air
 - Which went the furthest and why do you think that was?
11. The movement of water in plants:
 Cross sections of the root, stem and leaf show how the water moves throughout the plant.
 - Xylem: one way movement of water from the roots to the leaves driven by root pressure and transpiration (evaporation) of water from the leaves and stem. This works because the water molecules cling to each other and are pulled up the stem when water is lost higher up the plant.
 - Osmosis: the movement of water through the root wall, helped by root hairs and the higher moisture content in the soil than in the roots.
The life cycle of animals.

SCIENCE:
Describe the differences in the life cycles of a mammal, an amphibian, an insect, and a bird.

1. **Independent Learning:**
 - Research and show the difference between asexual and sexual reproduction in plants.
 - Research how you could grow plants from parts of a plant instead of planting seeds.
 - Research which creatures carry pollen from flower to flower and how?
 - Explain how plants produce their own food.
 - Investigate hydroponics.

Notes:
- The frogspawn / eggs hatch into small, fishlike larvae called tadpoles.
- The tadpoles grow larger, feeding on algae and plant material in the water.
- It begins the metamorphosis and grows its back limbs.
- When both pairs of limbs are grown and it has exchanged its gills for lungs, the froglet crawls onto land.
- The frog absorbs the rest of its tail keeps eating and growing.
- The frog reaches its adult body size.

7

| 1. Why do animals need to reproduce? Discussion. Outcomes: to keep the species going, no reproduction, no more animals of that type and they will die off. What is it called when all of a species dies off: extinct; when they are under threat of extinction they are called endangered. |
| 2. The wonder of life: Sexual: when two cells, each with half the DNA needed, combine and create a living cell. The combining of the sperm and the ovum produces a fertilised egg, which in mammals then grows during the gestation period to produce offspring. Initially the single cell would split and then split again, doubling each time. |
| 3. The life cycle of humans: what do we call each stage in the images? Discuss the student answers and then the answer slide. |
| 4. The life cycle of a great number of animals follows this cycle: baby, adolescent, adult. Watch the horse being born. How is it different to human baby in what it can do? |
| 5. Baby animal naming quiz |
| 6. The life cycle of a frog in stages plus a video: |

Animal Life Cycle sheet: 7:1
Development of a Chicken sheet: 7:2
Independent Learning gestation period sheet: 7:3
kind, but normally offspring vary and are not identical to their parents.

Identify how animals and plants are adapted to suit their environment in different ways and that adaptation may lead to evolution.

ENGLISH: Retrieve, record and present information from non-fiction

BIG QUESTIONS
- Why do animals need to reproduce?
- How do they do that?
- Are animal life cycles all the same?

7. The life cycle of a salmon in stages:

Notes:
- **Eggs**: The round pinkish / red translucent eggs are laid in gravel nests at the bottom of stream and river beds. During the 2 - 3 month period it takes the eggs to hatch, their eyes and other organs can be seen developing through shell.
- **Alevin**: When the salmon hatches from the egg they keep the yolk as a nutrient-rich sac that hangs below it's body. At this stage, they are about 2.5cm in length. During the next month, the alevin will remain hidden in the gravel nest and feed from the nutrient-rich yolk sac until it is all gone.
- **Fry**: The tiny salmon leave their gravel nest and begin to swim and feed for themselves. It is at this time that they start their journey downstream. The fry must be careful when swimming downstream to avoid predators such as birds, insects, and other fish, while still finding food to survive.
- **Parr**: During the next months they feed and grow, developing vertical markings on the sides of their bodies. At this stage they are about 15cm in length. They still must hide from predators and continue their downstream journey towards the ocean. Parr will continue to feed for 1 to 3 years before they are ready venture out into the wide open sea.
- **Smolt**: The young salmon now loses its vertical markings on its body and turns silvery in colour. They now swim together in large groups called schools. The young salmon will also adjust their bodies to saltwater, allowing them to swim out into the sea to feed and grow into adult salmon.
- **Adult**: Adult salmon spend 1 to 4 years in the open sea, swimming and feeding. They grow to their adult size and develop their unique adult markings. They are hunted by seals, orca whales, and fishermen. After swimming more than 2000 miles they return to their original spawning grounds to spawn.
- **Spawning**: The salmon return to the same rivers and streams that they were born in and they re-adapt to the fresh water. They begin the upstream journey to the exact part of the river or stream where they were born. They now cease feeding and live on the stores of fat within their bodies. A salmon ready to spawn will change their markings on their bodies. Their journey upstream is very challenging, swimming upstream against rapids, leaping up over rocky waterfalls and avoiding fishermen. When they finally reach their natal stream the female adult clears a spot in the stream bed by sweeping her tail back and forth to create a gravel nest that is referred to as a redd. She will then lay her eggs in this redd and the male salmon will fertilize them. Both salmon die within a couple of weeks of spawning.

8. The life cycle of a butterfly in stages
<table>
<thead>
<tr>
<th>8, 9 & 10</th>
<th>Life Cycles making task</th>
</tr>
</thead>
</table>
| **SCIENCE:**
Describe the differences in the life cycles of a mammal, an amphibian, an insect and a bird.
Identify that humans and some other animals have skeletons and muscles for support, protection and movement.
Describe the simple functions of the basic parts of the digestive system in humans.
Describe the life process of reproduction in some plants and animals.
Recognise that living things produce offspring of the same kind, but normally offspring vary and are not identical to their parents.
DESIGN TECHNOLOGY:

9.	The life cycle of an ant in stages plus a video
10.	The life cycle of a chicken in stages plus two videos on embryo development.
11.	Independent learning:
	- Research the gestation period of different animals and put them in order. (How long is it before the babies emerge?)
	- Research one of these well-known naturalists; David Attenborough, John Muir, Joy Adamson, Steve Irwin, Steve Backshall
	- In humans, what is meant by adolescent?
	- In a small group produce a piece of drama telling the story of metamorphosis.
8, 9 & 10	**Life Cycles making task planning sheet:** 8:1
Independent Learning: Story Mountain Planner sheet: 10:2	

1.	The students are going to be grouped so that they can make models of an animal’s life cycle. This could be organised in a number of ways:
	- The whole class could focus on one animal and groups create a stage in the life cycle. (large making groups)
	- The class could be split into two to focus on two animals and then into smaller groups for each life cycle (smaller making groups)
	- The class is split into four and each group is given the task of making a complete life cycle for each of the given animals (heavier on organisation, but greater ownership, variable size making groups). The Life Cycle making task sheet could be used to help organise this.
2.	Rough plan of progress:
Lesson 8:	
	- Plan and organise: stage, shapes, colours, details, who is going to do what?
	- Demonstrate processes such as papier mache’ and using shapes / balloons to get what you want. **The importance of drying thoroughly** and the correct use of hairdryers if being used.
	- Health and safety for equipment and processes.
	- Start making, joining balloons and getting the shape and structure correct
Lesson 9:	
	- Carry on with construction
	- Legs, arms, antennae etc. construction
	- Joining above to the main body
	- Dry thoroughly
Lesson 10:	
	- Finish making
Generate, develop, model and communicate their ideas through discussion, annotated sketches.

Select from and use a wider range of tools and equipment to perform practical tasks (cutting, shaping, joining and finishing accurately)

Apply their understanding of how to strengthen, stiffen and reinforce more complex structures.

ENGLISH:
In narratives, describing settings, characters and atmosphere and integrating dialogue to convey character and advance the action.

ART AND DESIGN:
To improve their mastery of art and design techniques

BIG QUESTIONS:
- What are the changes that animals go through in their lives?

Tips:
- Use of a glue gun to put together the main structures and joining on legs etc. will greatly aid the speed on making if using papier mache’
- A coating of pva glue / wall paper paste before painting will give a shinier finish
- The use of wallpaper paste for papier mache’ stops items getting fungal growth between lessons while drying, which can occur with flour and water.

3. Independent Learning:
- Write an account from the viewpoint of an animal going through metamorphosis.

<table>
<thead>
<tr>
<th>11 Evolution, suitability and adaptations</th>
</tr>
</thead>
</table>

SCIENCE
Identify how animals and plants are adapted to suit their environment in different ways and that adaptation may lead to

| 1. Why do animals and plants live where they do? How do they survive / live in a certain area. Why there and not somewhere else? |
| 2. Why are there such a wide variety of animals and plants? Range of animal types: types of whale, types of dog, types of tree / flower. How many can you name? |
| 3. To help understand how animals and plants have developed and changed over time, we need to discuss: |
| Adaptation |
Recognise that living things produce offspring of the same kind, but normally offspring vary and are not identical to their parents.

Recognise that environments can change and that this can sometimes pose dangers to living things.

Explore what plants need for life and growth.

ENGLISH: Retrieve, record and present information from non-fiction.

BIG QUESTIONS

- Why do animals and plants live where they do?
- Why are there such a wide variety of animals and plants?
- What do offspring inherit from their parents?
- Why is a giraffe’s neck so long?

4. Adaptation? Over time animals and plants have adapted their bodies and behaviours to suit their habitats. Can you think of how an animal or plant could adapt?

- Heredity
- Natural selection

- Fur feathers nose size breathing mouth ears
- Feeding protection claws roots leaves flowers tail
- Groups shelter hunting colour beak legs seeds
- Eyes feet colour stem food decoration

5. Who do these feet belong to and how are they adapted to the habitats they live in?

- Alligator foot: scaled, waterproof, webbed toes, sharp claws, tough
- Emu foot: strong, large, sharp claws, spread toes, rugged
- Gecko foot: microscopic “sticky” haired feet, flat toe pads, specialised muscles and tendons in their legs and feet to aid their grip.
- Duck feet: webbed toes, sharp claws, wide spread toes
- Donkey hoof: long limbs, small narrow hoofs, upright, tough, re-grow
- Camel foot: wide feet, tough pads and toe nails, strong and tough

6. Who do these body parts belong to and how are they adapted to the habitats they live in?

- Sun tailed monkey tail: long and controllable, for gripping branches and helping to climb
- Polar bear foot: wide (up to 31cm) to spread its weight, large flat pads are good for swimming, claws good for grabbing prey and hitting prey.
- Tiger teeth: canines can be over 10cm and powerful jaws good for killing and gripping prey, carnassial teeth adapted for gripping and tearing meat,
- Brown long eared bat: body length of about 4.5–4.8 cm, its ears are 3.3-3.9 cm long, flying mammal, echolocation for navigation and feeding
- Sea Turtle leg / flipper: strong swimmers, forelimbs modified into long, paddle-like flippers, neck and limbs are non-retractable to help swimming, they can dive for long periods of time.
- Stinging rose caterpillar: brightly coloured to warn predators that they sting, poison glands feed venom into the spines.

7. Discuss which habitat the animals come from on slide 206 and how do we think they might be adapted / suited to live in that habitat.

8. Camel adaptations:
• Long eyelashes to protect from blowing sand
• Nostrils can be closed to protect from blowing sand
• Stores fat in their humps to be used as energy
• Can last a week without water
• Large wide feet so they walk on soft sand
• Hairy ears to stop sand
• Colour of their body blends into the desert
• Thick lips to eat prickly desert plants
• Can last months without food
• Thick overhanging eyebrows to protect from the sun

9. **Penguin adaptations:**
• Webbed feet for swimming
• Streamlined body for swimming
• Wings shaped like flippers
• Thick skin and blubber to keep warm
• Huddle together to keep warm
• Dark feathers absorb the heat from the sun
• Produce oil for their feathers for waterproofing
• Heavy solid bones to give them weight to get under water

10. **Donkey adaptations:**
• Light tan or grey colour helps camouflage them
• Coat reflects the sun
• Can digest coarse plants
• Long limbs and narrow hooves for quick and easy movement through rocky ground
• Able to get energy from low calorie food
• Large ears give good hearing
• Large ears to get rid of heat
• Specialised teeth for grinding food
• Able to get energy from low calorie food

11. **Polar bear adaptations:**
• White fur is good camouflage with snow and ice
• Thick fur and a layer of fat to keep warm
• Thick claws help walking on ice
• Eyes at the front of its head: predator
• Wide, large paws for walking on the snow
• Can close its nostrils when swimming under water
12. **Giraffe adaptations:**
- Eyes at the side of the head to see predators
- Have long, rough tongues to help them get leaves from between thorns
- Long neck allows them to feed from the treetops
- Can last a long time without water
- Long neck allows them to see predators
- Has an extra-large heart to pump blood up their necks
- Skin pattern camouflages when around trees
- Long legs allow them to reach even further

13. **Lion adaptations:**
- Colour of coat helps camouflage in its habitat
- Loose belly skin allows it to be kicked without too much damage
- Rough tongue for peeling skin and meat from a prey’s bones
- Sharp predator teeth and strong jaw
- It’s mane makes it look bigger and protects the throat area
- Eyes at the front of the head: predator
- Heavily muscled front legs and shoulders for catching prey
- Retractable claws to grab and hold prey

14. **Similarities across different species:** example of homologous bones (bones that occur in different animals) in limbs of four limbed animals (tetrapods).

15. **Mimicry adaptations:** some animals and plants have adapted look like something else. Three examples are given: Oleander moth and a stick insect. Students to outline what they altered to make themselves look that way: shape, pattern, colour, size, decoration.

16. **Adaptation:** Using the knowledge from the previous exercise design an animal for one of the habitats shown. The Animal Adoptions design sheet has body part prompts to help.

17. Discuss student designs or let students present their animals to the class. The reasons for the shape and features of the animal should be suited to the habitats. The justification is the important aspect.

18. **Heredity:** all of the animals from a species are not always identical: how are
humans different to each other, how are frogs different to each other. Slides to visualise some of the differences: colour, size, shape, temperament and behaviour.

19. **Heredity**: Sometimes animals are selected for being different to make the species more pronounced or “stronger”. Dogs are a good example where they are bred to ensure the individual types of dogs maintain their differences in how they look.

20. **Heredity**: Some characteristics are passed on to an animal’s offspring from its parents. For example: What kind of things do you think we inherited from our parents. This could also be seen with our “learnt behaviours” we got from our parents and other people.

21. **Natural selection**: Two rabbits in a field, that are chased by a predator. Which one will survive and why?
 - The one that can run the quickest
 - The one that is most alert
 - The cleverest with its run
 - The careful one, that is always closest to its set
 Does this mean that the quickest, cleverest, most alert and careful rabbits survive to reproduce?

22. **Natural selection**: when biological or behaviour variations lead to an increased chance of survival. These changes become the norm because these animals survive.

23. **Natural selection**: The different theories on why the giraffe’s neck got so long: Darwin or Lamarck. What is the difference?

24. **Extension task**: How is a Sea Turtle adapted to its habitat?

25. **Independent learning**:
 - Draw an alien landscape with an alien suitable for the features you have drawn.
 - Research and report on an animal or plant that has adapted in some way to its habitat.
 - Explain why whiskers are important to big cats.
 - Research how fossils give us evidence that animals or plants have adapted over time.
 - Make a fact file about the variations and differences in an animal or plant species
 SCIENCE: Recognise that environments can change and that this can sometimes pose dangers to living things.

Identify how animals and plants are adapted to suit their environment in different ways and that adaptation may lead to evolution.

Identify that animals need nutrition, and they cannot make their own food; they get nutrition from what they eat.

ENGLISH: Retrieve, record and present information from non-fiction.

PSHE: Explain factors that affect the health and well-being of living things.

Show empathy for animals and others.

Identify and explain examples of what improves and harms their local, natural and built habitats.

BIG QUESTIONS:
- Why are so many species of animals and plants under threat? Why should we be worried about it?
- What is the problem with this beach?
- What other environmental problems have we heard of: paired discussion and then feeding back to the group:
 - Pollution, disease, poaching, non-native species, oil spills, farming changes, urban development, destruction of habitat, deforestation, global warming, mining and quarrying.

4. **What, where and why images?**
- Beach litter image on the coast of Guyana 2010 with a video on Dominic Republic beach pollution
- Illegal burning of forest in Madagascar 2010 with a video on rainforest usage
- Power station image with a video on pollution and acid rain.
- Drought image and a video on droughts.
- Oil spill pelican image with an oil spill video.
- Kalgoorlie / Fimiston Super Pit gold mine image with a news article on the impacts of mountain top mining.
- Elephant ivory image with a video of elephant ivory issues.
- Net fishing image with a video on illegal fishing to supply tropical fish.

5. In groups students research their given topic and then present their findings.
- Pollution, deforestation, poaching, destruction of habitats, farming changes.
- What, why, who, when and where?

6. In groups students research and present their findings for the following organisations and explain how they are helping to fight environmental problems:
- Greenpeace
- Keep Britain Tidy
- Friends of the Earth
- Surfers against Sewage
- Worldwide Fund for Nature

7. Independent learning:
- What is the difference between flotsam and jetsam?
- What could we do to help the environment?
- What does biodegrade mean?
- Why does plastic not biodegrade?
| Students from St Edwards School, Bolton with their rehomed donkeys Maco and Joop. |
| o Research what are the most endangered plants and animals at the moment? |
| o Research an animal or plant that has become extinct in the last 50 years. |
EDUCATIONAL VISITS

We encourage educational visits to The Donkey Sanctuary farm sites and in particular to our headquarters in Sidmouth, Devon. There are a full set of contact details for all our UK sites at the back of this pack. Please contact the individual centre to discuss availability.

We offer a great educational day out, tailored to your needs, giving you and your students a chance to meet and interact with our wonderful rescue donkeys.

Come and learn about these gentle and affectionate creatures who have typically had a problem in their earlier lives through mistreatment or abandonment. They very much enjoy the human interaction and love being stroked and cuddled.

Depending on your needs and availability we could offer a more hands on experience with your students having the chance to groom and care for our donkeys. Please contact the National Schools Programme Coordinator to discuss your needs and availability.

The Donkey Sanctuary at Sidmouth is free to enter and is open to the public 365 days a year from 9am until dusk.

We have Visit Guide to help you prepare for your visit, which is available from the Times Educational Supplement website: https://www.tes.co.uk/teaching-resource/The-Donkey-Sanctuary-Visit-Guide-KS1-2-6446647

For more information concerning educational visits to our sanctuary sites please contact:

National Schools Programme Coordinator on 01395 573039 or email carl.wholey@thedonkeysanctuary.org.uk
HOW YOU CAN SUPPORT US

Our worldwide work is funded entirely by donations and legacy gifts, so any fundraising or support you can give, no matter how small, will be of great value and will have a positive impact on our worldwide work.

SCHOOL FUNDRAISING

We would love to support your fundraising by giving assemblies or talks about the Sanctuary to your students and if you are kind enough to raise funds for The Donkey Sanctuary, maybe you could become an Advocate School and where resources allow we can arrange to bring donkeys to your school.

Ideas for fundraising in schools:

- Cake sale
- Jumble sale
- Sponsored walk / swim / quiet
- Non-uniform day
- Fancy dress event
- Auction of promises
- Car washing
- Raffle / Tombola
- Charity Disco

ADOPT A DONKEY

The Donkey Sanctuary adoption scheme is the perfect way to get your daily dose of donkey capers and you'll be part of our donkey's lives forever. Why not use some of your money raised for us to join the Adopt a Donkey scheme. That way you get something back too and your students will have a real focus for all their efforts.

See the website, adoption leaflet or ask for more details when making your donation. Adopt your donkey online at:

www.thedonkeysanctuary.org.uk/adopt

Or call

01395 573133
Keen to know more?

Then why not join our mailing list and be the first to hear about upcoming events, plus news from the charity!

By signing up you will receive:
- Free regular copies of our Newsletters
- Mail Order Catalogue full of donkey gifts
- Regular E-newsletters

To join simply fill out this form:

<table>
<thead>
<tr>
<th>Title</th>
<th>Surname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forenames</td>
<td></td>
</tr>
</tbody>
</table>

Address

Post code

Telephone

Email

Date

Age if under 18

Data Protection Statement
The Donkey Sanctuary, Donkey World Ltd and all its branches and subsidiaries will process your personal data for the purpose of achieving their charitable objectives and conducting fundraising activities. It is our policy not to transfer your data to any other organization other than our duly appointed agents, who have undertaken not to disclose such personal data, and all information is kept confidential. If you would prefer that we cease to send you further information about any of the above organizations please write to The Data Compliance Officer, The Donkey Sanctuary, Salhouse, Briston, EX10 9NU.

I consent to our processing your data for the purposes outlined.

National Schools Programme (NSP)

Keen to know more?

Then why not join our mailing list and be the first to hear about upcoming events, plus news from the charity!

By signing up you will receive:
- Free regular copies of our Newsletters
- Mail Order Catalogue full of donkey gifts
- Regular E-newsletters

To join simply fill out this form:

<table>
<thead>
<tr>
<th>Title</th>
<th>Surname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forenames</td>
<td></td>
</tr>
</tbody>
</table>

Address

Post code

Telephone

Email

Date

Age if under 18

Data Protection Statement
The Donkey Sanctuary, Donkey World Ltd and all its branches and subsidiaries will process your personal data for the purpose of achieving their charitable objectives and conducting fundraising activities. It is our policy not to transfer your data to any other organization other than our duly appointed agents, who have undertaken not to disclose such personal data, and all information is kept confidential. If you would prefer that we cease to send you further information about any of the above organizations please write to The Data Compliance Officer, The Donkey Sanctuary, Salhouse, Briston, EX10 9NU.

I consent to our processing your data for the purposes outlined.

National Schools Programme (NSP)